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(ABSTRACT)

The objective of this study was to determine the effect of nonlinear material behavior on the

response and failure of unnotched and notched angle-ply laminates under uniaxial

compressive loading. The endochronic theory was chosen as the constitutive theory to model

the AS4/3502 graphite-epoxy material system.

Three-dimensional finite element analysis incorporating the endochronic theory was used to

determine the stresses and strains in the laminates. An incremental/iterative initial strain

algorithm was used in the finite element program. To increase computational efficiency, a

180 ° rotational symmetry relationship was utilized and the finite element program was

vectorized to run on a super computer.

Laminate response was compared to experiment revealing excellent agreement for both the

unnotched and notched angle-ply laminates. Predicted stresses in the region of the hole were

examined and are presented, comparing linear elastic analysis to the inelastic endochronic

theory analysis.

A failure analysis of the unnotched and notched laminates was performed using the quadratic

tensor polynomial. Predicted fracture loads compared well with experiment for the unnotched

laminates, but were very conservative in comparison with experiments for the notched lami-

nates.
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1.0 Introduction and Literature Review

1.1 Introduction

Composite materials present increased flexibility to structural designers because laminates

from these materials can be tailored to achieve desired stiffness, strength, and dimensional

stability properties. A common class of laminates is the angle-ply laminate which consists

of ± q_ plies. These laminates often exhibit nonlinear material response under in-plane

loading. The laminate with a hole is also common in many design applications. When loaded,

such notched laminates have an inplane stress concentration at the hole boundary as well as

significant interlaminar stresses at all free edges. Few researchers have studied the complex

three-dimensional stress distribution in compression-loaded angle-ply laminates with a hole.

The angle-ply laminate is commonly used in advanced aircraft and aerospace designs be-

cause its stiffness can be varied over a wide range, dependent on the layup angle qx Of

course, in such design applications, cutouts are often a necessity. Therefore, it is important

to know how cutouts affect the stiffness and strength of these laminates. Because composite

material strength is lower under compression than in tension, most advanced designs are
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compressionloadingcritical. Withtheseconsiderations,it is easyto seethe importanceof

studyingthe responseof notchedangle-plylaminatesunderuniaxialcompressionloading.

Theobjectiveof thepresentstudyis to predictandinvestigatethethree-dimensionalstress

distributionin compressionloaded angle-plylaminateswith a central hole. A three-

dimensionalendochronicconstitutivetheoryfor transversely isotropic composite materials is

used to model the nonlinear material response. The endochronic theory and

incremental/iterative constant stress and constant strain algorithms are incorporated in a fi-

nite element program to determine laminate stresses. Inversion symmetry is utilized to sig-

nificantly reduce the computer storage requirements and execution time. Failure initiation

and failure modes are predicted using the tensor polynomial and maximum stress failure cri-

teria. The analytical results from this study are compared with existing experimental results.

1.2 Literature Review

This study involves a broad range of subject areas, among them the endochronic constitutive

theory, three-dimensional finite element analysis incorporating the endochronic theory, ma-

terial nonlinear laminate response, and notched laminate strength prediction. A thorough

review of the above areas would be exhausting; therefore, only the most significant subject

areas are covered. The following review encompasses material nonlinearity in composites,

the endochronic constitutive theory, and finite element analysis with material nonlinearity.

For a review on the stress analysis and strength predictions of laminated plates with holes,

see Burns, Herakovich, and Williams 1
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1.2.1 Material Nonlinearity in Composites

The literature is rich with papers describing nonlinear constitutive models for isotropic mate-

rials. However, for composite materials, the constitutive theory must include anisotropic re-

sponse. With this additional requirement of anisotropy, the choices of models are more

limited. Because composites can be analyzed both on a microscopic scale (as a heteroge-

neous medium) and on a macroscopic scale (as a homogeneous anisotropic medium), com-

posite material constitutive theories are divided into micro-theories and macro-theories.

1.2.1.1 Microscopic Theories

Microscopic constitutive theories use the elastic and inelastic mechanical properties of the

fiber and matrix to formulate the anisotropic constitutive relations on a macroscopic level.

Dvorak et al 2 and Aboudi 3 have made significant contributions to the development of micro-

scopic constitutive theories. Many others have contributed as well. Aboudi s and Pindera and

Herakovich 19both give thorough reviews of the literature on microscopic constitutive theories

for composites.

1.2.1.2 Macroscopic Theories

In contrast to the microscopic approach, macroscopic constitutive theories treat the lamina

as a homogeneous anisotropic medium and do not consider the individual constituent prop-

erties. Many researchers have contributed to the development of macroscopic constitutive

theories for composites. Only a limited number are included in this review. For a thorough

review of the literature on macroscopic composite material constitutive theories, see Pindera

and Herakovich 19
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Oneof theearlierworksin the areaof nonlinearconstitutivetheoriesfor fibrous composites

was that of Hahn and Tsai '. They used complementary elastic energy density to develop a

material nonlinear stress-strain relationship for a two-dimensional lamina. The stress-strain

relationship is linear in uniaxial loading in the longitudinal and transverse directions, but

nonlinear in shear. They compared their theory with off-axis coupon tests and obtained sat-

isfactory results for boron/epoxy Narmco 5505 and graphite/epoxy 4612 Morganite II.

Sandhu 5 developed an incremental constitutive theory using the tangential properties of the

lamina. The strain-dependent tangential properties were used to express the strain increment

in terms of the stress increments. Off-axis unidirectional and multi-directional laminate tests

were performed to compare the theory to experiment.

Hashin, Rosen, and Bagchi e proposed a theory which modeled the nonlinear behavior of a

lamina in shear and transverse directions. The longitudinal (fiber direction) stress is modeled

as linear elastic and does not affect the shear and transverse strains. The theory includes

interaction between the transverse and shear stresses in the nonlinear range.

An interesting approach was taken by Dvorak et al 7 to develop a continuum theory for the

elastic-plastic response of fibrous composites. They used a microscopic scale finite element

analysis on materials such as boron-aluminum to develop the theory. The theory agreed well

with numerical analysis for a variety of loading programs.

1.2.2 Endochronic Theory

The endochronic theory has most often been applied to isotropic materials. Although the

endochronic equations were not originally derived to model anisotropic response, the theory

is of a general nature, allowing it to model many material types. Recently, the theory has

been extended to anisotropic materials.
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1.2.2.1 Isotropic Materials

t

Although there is some disagreement as to when and with whom the theoretical foundations

for the endochronic theory were developed, Valanis 11 lz is credited with one of the earliest

published works of the endochronic theory. He used the concepts of irreversible

thermodynamics along with experimentally, observed material behavior to develop a math-

ematical ,h,,,,_,, .._ ,h ...... ;.... ,_:^:,.. ,,uuly...... , ......... ,v-,,o,.v_,,°o,,,.,,y. The term "endochronic ........ encoz]-wpasses aii

those theories in which "the state of stress at the present time is a function of the history of

strain with respect to a time scale, which is not the absolute time scale measured by a clock,

but a time scale which in itself is a property of the material at hand" 1_

In a series of papers, Valanis is. 18and Valanis and Lee 17extended the endochronic theory

to model increasingly complex phenomena. They compared various theoretical studies with

experimental results and found good agreement in most instances. Through these papers,

they brought to light the numerous applications which could be accurately modeled with the

endochronic theory.

1.2.2.2 Anisotropic Materials

Only two previous distinct research efforts have directed attention towards the development

and application of the endochronic theory to fibrous composites. They are the works of

Pindera and Herakovich 18z0 and Zinov'ev and Sarbaev 21. Pindera and Herakovich 19z0 ex-

tended Valanis' endochronic theory to anisotropic materials and then used this theory to

model the nonlinear response of unidirectional Celion 6000 graphite-polyimide. They derived

a set of two-dimensional constitutive equations and used them to model various planar load-

ing cases, including cyclic loading. Their results compared quite well with experimental re-

sults.
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Zinov'ev and Sarbaev zl recently used the endochronic theory to model composite laminate

behavior. They used classical lamination theory in combination with endochronic equations

to develop a material nonlinear laminate analysis code. They found good correlation with

experiment for a variety of laminates subjected to in-plane loading.

1.2.3 Finite Element Analysis with Material Nonlinearity

Prior to the finite element method, stress analysis in the presence of inelastic material be-

havior was a very intractable problem. Many approximate methods were developed to give

engineers useful answers; however, the accuracy of these approximate methods left much to

be desired. The advent of the finite element method and the digital computer provided engi-

neers with the capability to obtain accurate solutions to complicated, nonlinear material

problems.

Inelastic numerical analysis has its roots in the simultaneous development of both the initial

strain method =' and the direct stiffness method =3. In the initial strain method, the elastic

equations of equilibrium are modified to include the inelastic strains which cause no change

in stress. The marriage of the initial strain method to the finite element method was initiated

by Gallagher and his Co-workers =s zs. They used the initial strains to calculate an initial force

vector (sometimes referred to as a psuedo force vector) which was added to the finite element

force vector.

In the direct stiffness method, sometimes called the tangent modulus method, the nonlinear

problem is divided into a series of piecewise linear problems by stepping through the solution

and modifying the stiffness at each step. The finite element tangent modulus equations were

developed by Pope zT,Swedlow and Yang zs, and Marcal and King z9
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Most present day inelastic solution techniques are based on one of these two methods.

However, the efficiency, accuracy, and complexity of the present day techniques have all in-

creased substantially. Inelastic analysis, geometric nonlinear analysis, and the combination

of the two are now routinely performed using these present day techniques.

1.2.3.1 Endochronic Theory Applications

The first application of the endochronic theory of plasticity in a finite element analysis was that

of Valanis and Fan 30 They used the initial strain method formulation in parallel with an

incremental/iterative solution technique to calculate the stress and elastoplastic strain fields

in a copper plate containing two symmetrically disposed edge notches. The plate was loaded

cyclically in its own plane along its outer edges. Theoretical results were presented, but ex-

perimental comparison was not provided.

Watanabe and Atluri sl used a different form of the endochronic theory, completely analogous

to classical plasticity theory, in a finite element analysis to compare and contrast the results

of Valanis and Fan 30. The structure of the new endochronic equations allowed the use of the

tangent stiffness method as opposed to the initial strain method used by Valanis and Fan.

Again, theoretical results were not compared with experiment.

1.2.3.2 Composite Material Applications

Applications of the finite element method to the analysis of composite material structures ex-

hibiting inelastic behavior have been quite sparce. Adams and Miller 3z, Adams 33, and Foye

used the finite element method to analyze unidirectional fiber-reinforced composites mod-

elled on the microscale. Their models envisioned arrays of elastic fibers embedded in an

elastic-plastic matrix material. Such microscopic analyses can provide an understanding of
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the inelasticbehavior of unidirectional laminae; however, it cannot be extended efficiently to

multidirectional laminates.

Renieri and Herakovich 36 and Nagarkar and Herakovich 36 used a Ramberg-Osgood

constitutive model in a quasi-three dimensional finite element analysis of interlaminar

stresses in finite width laminates. Cross-ply, angle-ply, and two quasi-isotropic

graphite/epoxy laminates were studied. Griffin, Kamat, and Herakovich _7 used a Hill-type

yield criterion and an incremental plasticity approach in a fully three-dimensional finite ele-

ment analysis of notched composite laminates. Material nonlinear isotropic hardening was

modelled using the Ramberg-Osgood model and the constitutive equations were assumed

temperature dependent. The incremental solution was performed with nonlinearities intro-

duced as psuedo loads computed from initial strains.

Using a previously developed elastic-plastic constitutive theory for composites ss. 40, Bahei-

El-Din, Dvorak, and Utka 41 performed a finite element analysis of Boron/Aluminum plates of

various layups with and without cutouts. Their analysis shows good agreement with exper-

iment for uniaxial loading. Several other researchers also have recently applied various

constitutive theories to inelastic finite element analysis of fibrous composites '_ -"

Introduction and Literature Review 8



2.0 The Endochronic Theory

2.1 Introduction

As noted in the literature review, macro-level nonlinear constitutive theories modeling the

response of fibrous composite materials are limited in number and validity. The few theories

available were considered, and due to its firm thermodynamic foundation and demonstrated

correlation with experimental results, the endochronic theory s0 was chosen for this study.

Pindera and Herakovich z0 have shown their anisotropic endochronic theory to model lamina

response very well for in-plane loading. This study extends the anisotropic equations to three

dimensions in order to analyze laminates with three-dimensional stress states.

Valanis 111=originally developed the endochronic theory to explain certain responses exhib-

ited by ductile metals in the nonlinear range. Effects such as cross-hardening in tension due

to torsion as well as the formation of hysteresis loops in loading/unloading cycles, not easily

or accurately explained by classical plasticity theories, were accurately predicted by Valanis

for certain metals. The theory, based on irreversible thermodynamics, was developed using

The Endochronic Theory 9



the conceptof internalvariables. As previously mentioned, the theory is centered around a

deformation scale which is assumed to be a material property.

The deformation scale (also referred to as the time scale) can be either time dependent or

time independent. In this study, the deformation scale is assumed to be time independent.

Also, the deformation scale may be a function of stress or strain. This study uses a stress

based scale (ala Pindera and Herakovich) to make the determination of endochronic constants

more direct. This will become more evident later in this chapter. A primary feature of Pindera

and Herakovich's development is the use of a multiple set of internal variables, which reduce

the strain functions to power law approximations. Whereas metals are linear up to a yield

point, facilitating a single internal variable approximation, epoxy resin composites generally

show a gradual softening, with no well defined yield point. Multi-internal variables provide

such behavior.

Whereas Pindera and Herakovich used a single time scale z which is a function of all the

stress components, Zinov'ev and Sarbaev 21 used multiple, separate time scales zl (i=1,2,3)

which were functions of _t, (_2, and t., respectively. Valanis is similarly used the hypothesis

of the existence of two types of intrinsic time for isotropic materials: the "hydrostatic" and the

"deviator" types. This made it possible for Valanis to distinguish two deformation mechanisms

in the inelastic range: the volumetric and the shear mechanisms, each characterized by its

own intrinsic time scale. The use of multiple time scales allows for a more detailed material

model and can, theoretically, yield more accurate analysis, at the cost of added complexity.

The single time scale used by Pindera and Herakovich yielded good correlation with exper-

iment for laminae, thus the added complexity of multiple time scales was felt to be unneces-

sary for the present study.
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2.2 Development of 3-D Endochronic Equations

The endochronic equations are based on two fundamental laws of thermodynamics governing

an irreversible process: 1) Conservation of Energy, and 2) The Dissipation (Clausius-Duhem)

Inequality. From this base, Pindera and Herakovich lg rigorously developed the equations for

strain in terms of stress, a deformation scale z, and materia! constants.

In the equations that follow, all stresses and strains are expressed in reduced notation as is

standard in the composites literature,

E 1

E2

E3

E4

E5

E 6

Sll

1;22

I;33

and

_'23

713

712

(31

(32

(33

(34

, (35
I
I

(36
L.

(311

(322

(333

= (2.1)

"C23

I 1:13

i _12
L

where the 1-2-3 coordinate system corresponds to the material principal coordinates with the

1-direction corresponding to the fiber direction (Figure 1).

The reader is referred to Pindera and Herakovich's work 192o for a detailed thermodynamic

derivation of the equations that follow. In the following equation set (2.2), the equations for

normal strain (_i, i=1,2,3) are obtained from a small modification of those developed in

equation set (2.30) of Pindera and Herakovich's work lg. The equations for shear strain (El,

i=4,5,6) are identical to those shown in equation set (2.16) of Pindera and Herakovich.

Pindera and Herakovich appropriately modelled the fiber direction response as a stiffening

response because _1 was always positive in their experiments. Because the laminates ana-
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lyzed in this study are loaded in compression, the normal stress ((_1) in the fiber direction is

generally compressive. Therefore, rather than a stiffening response in the fiber direction, this

study uses the softening response which is exhibited by compression (_1- r,_ experiments. This

sonening behavior is assumed to be uncoupled from the other stress components and is ac-

counted for in the expression for al by a new function f((_l)- The form of this function is defined

later in this chapter. Notice also that the expressions for the nonlinear portions of a= and as

(the integral quantities) in (2.2) are independent of o'1. Equation set (2.2) is the complete set

of three-dimensional equations needed for this study,

As shown by Pindera and Herakovich, the anisotropic endochronic equations can be ex-

pressed in the following form. where the term f((_l) has been added to account for the softening

as explained previously. For a single internal variable qj (see Pindera and Herakovich 19 for

details on the internal variables q_),

- c_G0 + f(_l)
a1 - a(_l

- ago z-

F.2 -- aO.2 + SOB22(Z - Z')_2(z')d z' + S;B23(Z - Z')_3(z')d z'

- ago z-

a3- +  ;B22(z- z')o3(z')dz'+ So§23(z- z')o2(z')dz'

- aG o zE
a4 - a_ 4 + SO "(_4(z')e-;_4(z- Z')dz, (2.2)

- aG o zF
aS - _(_s + SO "% (z')e-_(z-z')dz'

- aG o
+ _oF

a6 -- 60. 6
• o.6(z,)e- _(z- Z')dz,

where
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D2•e - ;_(z - z')
B22(z - z') = E" e-X_(z-z') +

-- D2 • e- X_(z- z')
B23(z - z') = - E- e- ;_(z- z') + "B"

(B22 -- B23)2
E=

2(b22- b23)

B266
F-

b66

t 1
D = -_-{[2B12b11 - 2Bllb12] - [B11(b22 + b23) - 2B12b12]o.1}" [B12o.2 + -_-(B22 + B23)]

!

(1 -- ala2)[b11(b22 + b23) -- 2b22]

_'4--
C22 - C23

b22 - b23

C66
_s = Z6 -

b66

z' = Integration Variable

_1, _'2 -= Eigenvalues of equation (2.23) in 19

a 1, 0. 2 ---- Normalized eigenvalues, equation (2.26) in 19

In the above, dz = _/Sijdo'ido j where the terms of the fourth order, positive-definite tensor Sij

are material parameters. Likewise, b=j, Bij, and C_jare all positive-definite fourth order tensors

whose terms are material parameters. The _= terms are referred to as hardening exponents

which reflect different dissipation modes. GOis a potential function defined as a stable equi-

librium state, in directly measurable quantities (i.e. no internal variables). Extending
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equations(2.2)to multiple internal variables requires a new definition for the B,j(z) terms in

(2.2) and a new form of the expressions for E4,%, and %.

The new expressions for _4, %, and % with multiple internal variables q_ (a = 1 to M) is are:

- aGo z--

% - _4"4 + #°B44(z - z')°4(z')dz'

- aGo z-

% = _5"5" + #°B66(z - z')_5(z')dz' (2.3)

- ago z--

E6 - _0 6 + f;B66(z - z')o6(z,)d Z,

where all B'_j(z) in (2.2) and (2.3) are now given as:

1 M [(B;2 + a 2 (B_2 a 2 ]

-- _ B23 )B23) e-X_(z) +
B22(z) = 2a=1 (b_2- b23) (b22 - b23)

--'_' '_- a a a e-_'_(z)

1 M " a
B23(Z) = __ _ (B22 + B_3)2 e-:_(z)

2a=1 (b2_2- b_3)

(B_2 . 2 ]--B23) _._(z)

(b_2 -- _ .e- 1-- b23)

-- 1 M (B_2-Ba) 2 -X_(z)
B4.4(Z) = -- 7.., 23 e

2 a= 1 (b_2 b2%)

B'66(Z) = 2 a_=l b; 6 _

c_+ c_
b_+ b_%

_ ----;L_= C_2--C2_3
b_- bt_
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and

M _-- number of internal variables

The expressions for E2 and E3 show the response in the direction transverse to the fibers to

be governed by two independent sets of hardening exponents, X_ and Z_. Because 24 = X_,

coupling exists between transverse normal and shear response in the plane of isotropy. As-

suming the hardening response is similar in shear and transverse tension in the plane of

isotropy yields b_3= B_3 = C_3 = 0. This simplifies the expressions for the Bij parameters.

C_2

x; = x; = x;- b;2

__ M iB0_ _2 a
B22(Z) = _ _22/ e-_(z)

a = 1 b_2

m

B23(z) = 0 (2.4)

B44(z ) -- ._.-B22(z)

M ,_a ,2

B6s(Z) = ,T.,_e -x_(z)
a = 1 b66

This greatly simplifies equation set ( 2.2 ) to:

- ago + f(ol)
i; 1 -- _0.1
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g

O - aG o- + fz§22(z- z')_2(z')dz'62 ju

-aG o + .{oB22(Z- z')os(z')dz'
63 = ao.3

-aGo + __j-o_22(z_ z')_,(z')dz' (2.5)
F'4 = ao---4--

- (_G0
= + fzB66(z - z,)o-s(z')dz'E5 ju

-_G o + So§6s{z- z,)cB(z')dz'
66 = aO"---'_

To obtain a power-law approximation for equations (2.5) , it is necessary to integrate the

equations by parts. This is done for the expression 6e below:

- z')G6(z')d z '

-aGo + SoUd v (2.6)
_8 = aq'--"_

where

u = o6(z')

M (B_6)2 __(z-z')dz,
dV = =T.,=Ib_---_e

@
dU =
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V __.

1 "¢'[B66_2 -:_(z-z')M
__, .e

Recalling that,

.foUdV = uvJ z- SoVdU
o

we have

-(]Go (B_6) 2 z z M 1 (B_6) 2

F'6 _ a°6 + __, 1 e-_(z-z')o6(z')l _ S0 _,_, %_ b660_= 1 _.; b_6 0 -

_ - (]GO +

(](36

-_(z-z')" ""oo6_z'J #
i e --OZ

(]Z'

M 1 (B_6) 2
7-, _ "[O6(Z) - o'6(0)e -;_(z)] -

a = 1 _L_ b66

z M 1 (B_6) 2 ;_(z-z') (]°6(z') dz'
"_;0l_'=1 ;L_ b;6 "e- (]z'

However,

(B_6) 2 z M (B_6)2 a06(z')dz'

e= 1_-; b66 _ a

therefore,

-(]G O M 1 (B_6) 2 e-_(z))
_;6 - a(_6 + 06(0)¢,T.,=1 ;L_ b66a .(1 - +

-_(z-z') ao6(z') ,
(1 -- e )_dz

(2.7)

Equation (2.7) corresponds to equation (5.17) in Pindera and Herakovich 19
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Similarexpressionsholdfor the remaining principle strains. Assuming a large number of

internal variables (M) represent the material response, a power law approximation may be

introduced as follows:

M 1 (B_6) 2 _z) 906 zne n67_, (1 - e- -_ • for > 1 (2.8)

where

B°s is an arbitrary constant whose subscripts relate it to B66

n6 is a constant whose subscript relates it to Bss

The deformation scale z requires that (_6(0) = Gs(0) = o'4(0) = o'3(0) = oz(0 ) = 0 . Using the

power law type expression (2.8) for all the strain components gives the following form of the

endochronic equations:

- aG O
+ i(ol)

E1 -- ao I

-aG0 z 0 , n ao2

&2 -- aG2 + J'; 922" (Z -- Z ) z--_-Z,dz'

- aGo z 0
E3 - ao-3 + 50 B22 "(z - z') n2--_-z dzao.3 '

- aGo 1 rZBO
- z ) dzI;4 _44 + -2-J0 22" (Z -- ' nz ao.4 '

Z 0 , n _05

+ SOB66" (z - z ) L_-Z, dz'

(2.9)

-c3G0 z 0 , n c3o'6

E 6 -- a(:76 + j'; B66" (Z -- Z ) S_dz'aZ'
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where

B°2is an arbitrary constant whose subscripts relate it to B22

n 2 is a constant > 1 whose subscript relates it to B22

2.3 Incremental Form of Endochronic Equations

The equations developed in the preceding section are not suitable for use in a finite element

program. This is because the strains are functions of complex integrals involving the defor-

mation scale z. Calculation of the parameter z requires knowledge of the load history. For

simple cases, such as tensile or compressive loading of a lamina, the stresses are propor-

tional to one another and these proportions do not change with increasing load. This allows

z to be expressed as a proportionality constant times the desired component of stress. As

an example, consider uniaxial tensile loading of a lamina transverse to the fibers.

dz = JS22do-2d_ 2 = JS--_-2 d_ 2 (2.10)

z = o2

Similar expressions may be developed for other lamina orientations under a uniaxial load. In

fact, the endochronic constants are calculated using these uniaxial load cases. This is shown

later in section 2.4.

In a laminate, the stresses need not be proportional to one another. Since the load history

of the stress components is not known a priori, equations ( 2.8 ) may not be integrated exactly.

However, equations (2.8) may be integrated incrementally by assuming the stress compo-

nents to be proportional to one another over each load increment. This allows the stress
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componentload historiesto be nonproportional in a piecewise sense.

pression for _6:

Consider the ex-

- aGo z 0 n a°'6 ,
_'6 - + _'nB66" (z - z') 6--dz

az'

Written incrementally, this becomes

m _ o

_A

zl 0 _ Zz 0 __6"- + J'oB_(z. z')°'SS_dz' + J'oB66(z. z')"'S62dz'+
_a s

zN 0
.......... + 5; B66(ZN -- z')nsS6NdZ'

or

E;N = -_Go + B0,__.6.,_6{S61[z_le+l _ (ZN_Zl)ne+I]}+
_6 (ns + 1)

B°e _,,_r(z,,..- z,).,+,-(z,- z_)°,+_]+.....+,+,,oz,- ,,_,)o,+,,,..,
(ns + 1)

I;sN_ -aG o + B606 N +1 +1
aa s (n6 + 1)k_, S6_[(zN -- Zk- 1)n' -- (zN -- zk)n' ]

(2.11)

where

aa6 k _" 4(;6ssk- az _ Az k k= 1,2 ...... N

N
zN = T.,z_zk

k=l

N --- number of increments

The Endochronic Theory 21



Theintegrationaccuracyis a function of the increment size. The smaller the increment, the

more accurate the integration. In the limit, as Az goes to zero, the integration becomes exact.

For mildly non-proportional load histories, the error introduced by this process should not be

great.

2.4 Determination of Endochronic Parameters

Determination of the endochronic constants requires analyzing many test results. Burns et

al 1 performed all the laminate tests as well as the 10° and 45 ° off-axis tests and the uniaxial

[0] and [90] compression tests. All Iosipescu tests as well as the 15° and 30 ° off-axis tests

were performed by Jack Beuth 50at VPI. Data from at least two and in some cases three tests

were used in determining the constants for this study. The final value of a particular

endochronic constant is the average of the values determined from all tests. Any exceptions

to this procedure are noted. Appendix A shows the least squares method of representing a

"best fit" line through the experimental data.

The endochronic equations may be written in terms of reversible strain (_r) and irreversible

strain (_IR). The reversible strains are represented by derivatives of the potential function Go

in equations (2.9), whereas the irreversible strains are represented by the integral quantities.

', = + (2.12)

where

_R_ -aG0 i = 1,2 ..... 6
a(_i

and
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R=  (oI)

I_/R Z 0 , n (_O2 ,----SOB22" (z - z) 2--dz
aZ'

Z 0 ,n 0_'3 ,
E/R (z- z)' dz

aZ'

I;_R= 1 rZB0"2"J0 22" (z - z')n dz'

= SOB66 •(z - z')ne dz'

EIR-----z 0 , n (_06
J';B66" (z - Z ) S_dz'o

aZ'

2.4.1 Reversible Response

The potential function Go has not been discussed in any detail to this point because its form

is strongly material dependent and stress sign dependent. As noted earlier, Pindera and

Herakovich used a function Go which modeled stiffening behavior in the fiber direction of

C6000/PMR15 graphite-epoxy under uniaxial tension. AS4/3502 exhibits similar tensile be-

havior. However, because the laminates in this study are loaded in compression, the fibers

are in compression except, possibly, in regions near the hole. A typical uniaxial compression

test of AS4/3502 1 exhibits softening as shown in Figure 2. This softening behavior is modeled

in this study as an uncoupled event. Therefore, it is not represented by a function of z nor is

it included in the potential function Go, ala Pindera and Herakovich. Instead, it is expressed

as a separate function f((_l) which is determined in the following section.
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ThefunctionGoneedsto modelonlyreversiblelinearresponseandis definedas

1
-G O = --_-Aijo.i(3j (2.13)

Therefore,

- _G 0

_.R _ _°i -- AljO"j i = 1,2,3,4,5,6 (2.14)

A thermodynamic constraint on Go requires the fourth order tensor Ajj to be positive

definite 19.

lira 52(-Go)= Aij(_°'i(_°'j _ 0 (2.15)
Oi --_OO

The fourth order tensor A,j is the compliance matrix. It represents the initial compliance of the

material and is determined from appropriate tests.

2.4.2 Response Along the Fiber Direction

The function f((_l) originally introduced in equation (2.2) is determined from a uniaxial

compressive test (Figure 2) with the fibers aligned along the specimen's axis. A simple power

law fits the experimental data very well; therefore, the functional form of f((_l) was chosen to

be:

f(_l) = -t- BI1 IO-1 In1 where n1 > 1 (2.16)

The absolute value sign is used because _t is usually negative. The function f((;1) is negative

if o 1 is negative and positive if ol is positive.
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t

Substituting equations (2.13) and (2.16) into equation set (2.8), the complete form of the

endochronic equations can be written as

_ = Alj_ j ± Bll lal In_

t

z 0
I;2 = A2p j + S;B22"(z - z,)n_dz , i

z O /_aofZ'_(3'
_3 = A3pj + J'oB22"(z - z')__dz '

aZ'

1 rZBO
£4 = A4j°'j + 2-,)0 22" (Z -- Z') nz_G4(Z') dz'

aZ' (2.17)

I

Z 0 • _Os(Z t)t

E'5= AsjO'j + S;B66 (z - z') ne dz'
aZ'

(I

z 0 a '
E6 = A6jO j + 5;B66"(Z- z')n_dz ,

c_Z'

2.4.3 The Compliance Matrix

The reversible strain of the material is expressed in terms of stress and the compliance matrix

Aij as

R
E5

All A12 Ala 0 0 0

A12 A22 A23 0 0 0

A13 A23 A33 0 0 0

o o o A_0 o

0 0 0 0 A_ 0

0 0 0 0 0 Ace

F

O1

(_2

O3

(34

O'5

OS I
,a

(2.18)
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Underthe assumptionof transverseisotropyin the 2-3 plane,A33

Ass= A6s• This simplifies the above expression to

= Az2, A. = Alz, and

E_

E_

All A12 A12

A12 A22 A23

A12 A23 A22

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

A44 0 0

0 A66 0

0 0 A66

(31

0.2

0.3

0"4

0"5

(36

(2.19)

Equation (2.19) contains only five independent constants (A., AI=, Aa, A.4, and A6s). The addi-

tional A=3constant is a function of A==and A,. (i.e. 2(A=2 - A=3) = A= ).

2.4.3.1 The All Constant

The constant All is determined by considering the compressive loading case of o1 _= 0 and

all 0.1= 0, (i = 2,3,4,5,6). The reversible strain in the fiber direction is then

F,;I" = All0. I (2.20)

and

aO. 1 -- All

However, from (2.17)
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Therefore,

a_l (2.21)
All =-_1 al =0

The data from two compression tests on unidirectional [0] AS4/3502 were essentially linear in

the range of _1 = 0 to _1_ 25 ksi. A least squares fit through these points gave a straight line

with a slope m (or Et). Att is the inverse of m (or E_).

Averaging the values for All from both tests (Table B.l(a)) yields:

All = 5.12687 x 10 -8 (psi -1) (2.22)

2.4.3.2 The A12 Constant

Like A_, the endochronic constant A_2 is also calculated from a [ 0 ] uniaxial compression test.

Consider the expression for _ as shown below:

_,2R = A12_31 for (_1 _ 0 (_i = 0 (i = 2,3,4,5,6) (2.23)

Now

and

=0

From (2.21)
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andbydefinition

Therefore,

A12= - AllY12 (2.24)

In orderto calculate AI=, v12 must first be determined. This is done by fitting a least squares

line through a plot of c= versus st (Figure 3). The least squares fit is used in the range of data

points from sl = 0 to E1 -_ 0.13%. The value of vl= is the slope of this line.

Averaging the values of v_=from both tests (Table B.l(b)) yields

v12 = 0.333 (2.25)

Combining (2.22), (2.24), and (2.25) gives

A12=-1.70722 x 10 -8 (psi -1) (2.26)

2.4.3.3 The A22 Constant

A 90° uniaxial compressive test is used to determine Azt • In this test, the fibers are oriented

transverse to the loading axis. Because all o= (i = 1,3,4,5,6) are zero, the expression for E_ is:

ER = A22(_2 (2.27)
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and

c_R c_2
= A22= o,=0

Utilizing the plots of _= versus s= shown in Figure 4, a least squares fit is used in the range

of data points between _= = 0 and o-= -_ 8 ksi. The endochronic constant A_z is the inverse of

the slope of this line (modulus Ez).

Averaging the value of Art from both test runs (Table B.l(c)) yields

A22 = 6.55133 x 10 -7 (psi -1) (2.28)

2.4.3.4 The A44 Constant

The endochronic constant A, is determined from an Iosipescu shear test in the 2-3 plane. This

type of test induces an approximately pure 2-3 shear stress o, (¢z3) in the central region of the

specimen '7 . Figure 5 shows the test specimen and idealized loading conditions used for this

test. (The symbol e in this figure is only valid for 1-2 plane tests. For 2-3 plane tests, the fibers

run in the direction of page depth). Figure 6 shows plots of (_4 (_z3) versus E4(7z3) for two tests.

The endochronic constant is determined by fitting a least squares line through the initial por-

tion of the curve for the range of data points between _, = 0 and _4 _ 6 ksi. The constant

A, is the inverse of the slope of this line (modulus G=_).

Averaging the values of A, from tests 1 and 2 (Table B.l(d)) yields

A44 = 2.18049 x 10 -6 (psi -1) (2,29)
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2.4.3.5 The A23 Constant

Because a transversely isotropic material contains only five independent constants, Az3may

be determined indirectly. Consider the following expression for the shear modulus Gij

(i, j = 1,2,3) in a plane of isotropic symmetry.

El (2.30)G. - _
' z(vij + i)

E2
G23 --

2(v23 + 1)

e 1 _ 2(v23+ 1) _ 2_tv23 + 1
G23 E2 E2 /

However, by definition,

1

A44- G23

I

A22- E2

-- V23

A23 - E2

Therefore, as shown earlier,

A44 --- 2(A22 -- A23 )

A44

A23 = A22 2

From the previously determined values of A==and A,_, Az_is calculated to be
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A23 =-4.35111 x 10 -7 (psi -1) (2.31)

2.4.3.6 The A66 Constant

The endochronic constant Ass is determined in an analogous manner to A,_. An Iosipescu

shear test in the 1-2 plane yields a region of approximately pure Cs (_lz), from which <_sversus

Es (YI=) may be plotted. Figure 7 shows such a plot for two tests. A least squares fit line

through the initial portion of each curve yields a slope m (modulus G12), the inverse of which

is As6. The equation for E_ under the condition _s #= 0, a_ = 0 (i = 1,2,3,4,5) is shown below.

i;R = A66_ s (2.32)

and thus

c_ER &6

-- A66 = -_'6 I_e =0

Because the test data was available, off-axis tests of 10° , 150, 30° , and 45 ° were also utilized

to determine Ase. Figure 8 shows (_s versus Es for the four off-axis tests.

Averaging the values of Ass from the above six tests (Table B.2(a)) yields

A66 = 1.18373 x 10 -6 (psi -1) (2.33)

2.4.4 Irreversible Endochronic Constants

The irreversible endochronic constants are determined by plotting In E[R versus In _1 for vari-

ous lamina tests. These plots should be a straight line because when only one stress com-
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ponent (_j) is present, the irreversible portion of strain (ElR) is represented by a power law

(2.12). Symbolically, we can represent the power law form of ElR as follows:

s i = Cio_ (i = 1,2,3,4,5, or 6, no sum on i) (2.34)

where

C t --- functions of the irreversible endochronic constants

k1 =-- n1

I<2 - n2+ 1

k3 _ n2 + 1

k4 -- n2+ 1

k5 - n6+1

k6 - n6+ 1

Taking the logarithm of both sides of the above equation gives:

In sl R = kIIn_i + InCj (2.35)

In the classical x-y coordinate system, the above can be represented as:

y= mx+ b

where

IR
y - In ¢i

x -- In(_ i
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m = ki

b = In C i

In this coordinate system, m is the slope of the line and b is the y-intercept. The above rep-

resentation is used in evaluating all of the irreversible endochronic constants.

2.4.4.1 The n and B Parameters

The same tests used to determine the Aij parameters are utilized in calculating the

endochronic constants appearing in the irreversible strain expressions. These constants in-

clude nl , Bll, nz, B°z, ne, and B°s (2.17).

n_ and Btl

The constants nl and BI_ are calculated from the 0° uniaxial compression tests.

pression for E_" is written as follows:

{:IR = Bl1(_71

The ex-

Using equation (2.34),

C 1 = Bll

k1 = n1

For a power law fit, this plot should yield a straight line with slope I_ and y-intercept In C_.

Figure 9 shows the experimental curves to be best represented by a straight line in the range

of data points from In (_1 = 11 to In c_ = 11.7.
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Averaging the results from tests 1 and 2 (Table B.2(b)) yields

n 1 = 2.44791 (2.36)

n= and B°==

Bll = 1.90645 x 10 -16 (2.37)

The constants nz and B°2 are determined from the 90 o uniaxial compression tests. The ex-

pression for E_" (2.17) is

z o= SOB22 • (z - z')n2 a_2(Z_) dz' (2.38)
az'

where

dz = _/Sijd(_id(_ j

Under pure uniaxial loading, _= _= 0 and g0 = 0 (i = 1,3,4,5,6). The expression for dz simplifies

to

Therefore,

dz = _/S22do2do 2 = ._/S-_2do2

z = _/ST2 _ 2 (2.39)

a_2 _ 1

and
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z 0= S;B22 ° (Z - z') n=,1_ dz'
 /s22

Integrating,

E_R_ B_2 [ -(z - z') nz +1

L n2 + 1
Z
0

B°2 z nz+ 1

%/S_2(n 2 + 1)

n 2

_;/R _ B02 ($22)-2"- (_n=+ 1
n2+ 1 2

Using equation (2.34), the above can be symbolically represented as:

t;/R -- C2ok=

where

n 2

C2 _- B°2 (S22)-'2-
n2 + 1 (2.40)

k2 _ n2 + 1

In the above equations, In C= is the y-intercept and I_ is the slope of the In _R versus In (_z

curve.

The plots of In _ versus In o= for two tests are shown in Figure 10. A straight line is best re-

presented over the range of In oz _ 9.9 to In (_= _ 10.3.

Averaging the values of n= from both tests (Table B.2(c)) yields
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Q

e n2 = 2.45967 (2.41)

It was necessary to calculate n= before B_2because B°= is a function of n2 as well as Szz (2.40).

Because S_ has not yet been determined, Bo will be leR for now as a function of S_z.

Since In C= is the y-intercept, we have

n2 + 1 = Yintercept

n 2

B°2($22)T _ ey=,t,,c,pt
n2+ 1

-- n 2

B°2 = ($22)--2--(n 2 + 1)e y="_r"_

Averaging the values of B°z from both tests (Table B.2(d)) yields

B°2 = S_1.22984(2.370096 x 10-18) (2.42)

n6 and B°66

The constant ns is evaluated in a similar manner to n2 using the two Iosipescu tests in the 1-2

plane along with the 10 °, 15 °, 30 °, and 45° off-axis tests. The expression for E__ is written as

follows:

n6

_;16R_ B°6(S66)T,._n, +1
n6 + 1 v6

(2.43)

Using equation (2.34), the above can be symbolically represented as

4,R=c.o,y
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where

C 6

k6

n6+ 1

= n6+1

The irreversible strain E_R can be written as:

/R = _6 - CR = E6 _ A66(_6

The irreversible strain _R may be calculated in two different ways. The first scheme uses the

average value of As6 determined in the previous section. The second scheme uses the value

of Ase determined for each separate test. Since it is not known a priori which scheme will yield

the most accurate value of n6, both schemes are used to determine separate values of n6.

These values are compared with experimental results later to determine a best fit value.

Figure 11 shows a least square fit to be best represented in the following ranges: Iosipescu

Test 1 (in cs-_8.7 to 9.5), Iosipescu Test 2 (In _6_8.62 to 9.51), 10 ° Off-Axis Test (In (_e_8.39 to

9.16), 150 Off-Axis Test (In _6_8.14 to 9.0), 30 ° Off-Axis Test (In _e_8.62 to 8.91), and 45 ° Off-

Axis Test (In _e-_8.25 to 8.46). The following result is based on the average Ae6 value of

1.18373 x lO-e (psi-l).

Averaging the value of ns from the six shear tests (Table B.3(a)) yields

n6A = 2.54504 (2.44)

where the subscript 6A represents the value of n6 calculated using the average value of As6.

Averaging the value of ne from the six shear tests (Table B.3(b)) yields

n6B = 2.53355 (2.45)
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where the subscript 6B represents the value of ns calculated using the individual test values

of As6.

Comparing the plots of In E_R versus In os in Figure 11 shows that the 0 o Iosipescu test best

represents a straight line. Therefore, the value of ne from this test is also considered in the

best fit scheme in the following section. Actually, two values of ns exist for the 0 o Iosipescu

test; a value based on the average A. compliance and a value based on the A. compliance

of the 0° Iosipescu test. These values are represented by the subscripts 6C and 6D respec-

tively and are listed below.

n6c = 3.04940 (2.46)

nSD = 3.1854 (2.47)

Because both B°s and S. must be calculated from a pure shear test in the 1-2 plane, one of

them is redundant (see equation (2.43)). Since B°s is simply a multiplicative constant which

shifts the curve of In _R versus In _B to the left or right, it is arbitrarily set equal to the value

of I in this work.

B°6 = 1 (2.48)

2.4.4.2 The Sij Parameters

With the exception of S. and S=, the Sij parameters are calculated from the off-axis coupon

tests. S. is calculated from Iosipescu tests in the 2-3 plane and S_ is calculated from Iosipescu

tests in the 1-2 plane.
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TheConstantS44

Theequationgoverningtheirreversiblestrainresponseina 2-3planeIosipescutest is shown

below.

_./R : rz 1 B0JoT 22"(z - z')n--dz '_Z'
(2.49)

In the same manner as equations (2.38), (2.39), and (2.34), the above can be symbolically re-

presented as

where

6 IR _-- 040.4k4

132

C4 = BO2 ($44)-_- 0._.= +1
2(n 2 + 1)

k4 - n2+ 1

Because nz has already been calculated and B°z has been calculated as a function of $22, S.

may be calculated in terms of B°z. However, examining the stress-strain behavior of the 2-3

plane Iosipescu tests as shown in Figure 6, the stress-strain response is essentially linear 1

This observation means the irreversible portion of _4 is zero. If s]=Ris zero and nz and B0z have

been determined (and are used in the irreversible strain expressions of other strain compo-

nents), then S. must be set equal to zero.

844 = 0 (2.50)

I These tests did not fail in a shear mode. Therefore, their ultimate strain values may be significantly
larger. It is possible that these specimens would show non-linear behavior at higher strain levels.
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TheConstantS.

In the same manneras the Atj parameters,the S=jparametersare assumedto obey

transverselyisotropicconditions. Therefore,S,j (j = 1,2,3,5,6),Ssj(j = 1,2,3,4,6),and S6j

(j = 1,2,3,4,5)are all setto zero. Likewise,$1_= Slz, $33= S==, $55 = $66 , and in general,

S_j = Sji. The expression for $23 in terms of $22 and S= must hold as well.

$44 (2.51)
$23 = $22 2

However, because S. = O, S=3must equal Szz.

$23 = $22 (2.52)

The Constant S66

As mentioned previously, the S6e parameter is determined from Iosipescu tests in the 1-2

plane. The equation governing the irreversible strain state E_R in this test was shown previ-

ously to be

si R = C6_ s

where

B06(S66)-_ -
Ce ---

n6+ 1

k6 -= n6+ 1

Because B°6 = 1, the expression for S. may be written as
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n 6

In
Ylntercept

n6 + 1

n$

(S_)-2"- = (n 6 + 1)e ylmr==pt

2

$66 = [(n s + 1)eY,,t.=op,]-_e

Note that Su is a function of ne. Therefore, there will be four values of S. corresponding to the

four values of ne (n_,neB,nec, neo ). The following value of Su is calculated using n_.

Averaging the values of Su from tests 1 and 2 (Table B.3(c)) yields a value for Sen of

SssA = 1.96639 x 10 -13 (2.53)

In an analogous manner, SuB, Suc, and Suo are calculated to be

$66 B = 1.805796 x 10 -13 (2.54)

Sssc = 1.26342 x 10 -12 (2.55)

$66 D = 1.839071 x 10 -12 (2.56)

The remaining S=j parameters are calculated from off-axis tests.

The Constants S_, S12 , and $2=

As mentioned previously, an off-axis test introduces not only the desired shear stress, but

normal principle stresses parallel and perpendicular to the fibers. Therefore, an off-axis

coupon test will have non-zero stress components _4, o=, and os (_12). The ratio of these

stresses depends on the off-axis angle, but throughout the loading, equilibrium requires that
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they be proportional.In otherwords,the ratiosof thesestresscomponentsdo notchange
O'1 = 02

during loading (i.e. _ const., _ const., etc.). This is a very important result because

it allows the three remaining Sij parameters, $11, Sz2 , and $12 to be calculated from three

separate off-axis tests =.

The expression for the irreversible strain in the 1-2 plane (slR) is written

Z 0 '
_./R = SO B06" (Z - Z') n' Oo6(z') dz' (2.57)

az'

where for the combined stress state (_1, o=, crs

dz = _/S11do _ + $22d022+ 2S12doldo 2 + $66d0"_

Writing dot and doz in terms of do8 gives

do 1 = cot (p do 6

do 2 = tan q>do e

where

Therefore,

Angle of Fibers from the Loading Axis

dz = _$11 cot2(p + 2S12 + $66 + _22 tan2q ) d°'6 (2.58)

Z _/$1t cot2q) + 2S12 + $66 + $22 tan2_ 0 6

41

It was mentioned earlier in chapter 2 that the endochronic equations were written for strain in terms
of stress to facilitate the calculation of the S,j parameters. Note that in the off-axis tests, the strain
component ratios are not proportional for nonlinear response. Because of this it would be very dif-
ficult to calculate the S_)parameters if stress were expressed in terms of strain.
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Substitutingtheaboveexpressionfor z into the integral equation (2.57) gives

_R _ B° {811 cot2(p + 2S12 + 866 + S22tan2(p]-_(_;8
+1

n6+ 1
(2.59)

Using equation (2.34), equation (2.59) can be symbolically represented as

_R = c6_k8

where

C6 -
ns+ t

B°6 ,[811 cot2q) + 2(812 + 866)+ 822tan2,p]-_ "

k6 --- n6+ 1

For three off-axis tests of different angles, the above expression yields three equations for the

three unknown parameters $11, Szz , and S_t. To use these equations, the In E_R is plotted

against the In (_6 for each off-axis angle. Figure 11 shows these plots for the angles of 10°, 15 °,

30 ° , and 45° (because four tests were available, four sets of three different off-axis tests were

utilized).

Pindera and Herakovich TM rearranged the above equations to yield simple equations for de-

termining $11, $22, and S_=. These equations (eqs. (5.22) and (5.23) in Pindera and Herakovich)

are shown below.

2
811= (n6 + 1)_-s x

2
822= (n6 + 1)"_-ex _,

2

S12= y (2.60)
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where

A66(ml)_ - A66(q_2)_]Etml- tq_3]- LA66(q_I)_,- A66(q_3)_,ILtq_1- tm2]

= [-cq__--cq_2---][t_o, t-_3 ] Echo---1---cq_----3iIt q_--_---tq_2---]

, 2 , 2 r, 2 , 2 I.

A66(q_)"- n6B°6+1 '[$11 c°t2q_ + $22 tan2q) + (2S12 + $66)]-_"

where i can be either 1,2, or 3, tq_, = tan2q_ and cq_= -- cotZq)j

Using the above equation set along with plots similar to Figure 11 allows $1t, Sz2, and $1= to

be calculated. Using the four off-axis tests available in conjunction with the four sets of n6 and

Se6 produces sixteen different sets of parameters. These sets are shown in Table 1.

2.4.5 "Best Fitting" the Parameter Sets to Experiment

It was mentioned earlier that a condition imposed on S_j by thermodynamic constraints is it

must be positive definite. Therefore, of the sixteen parameter sets shown in Table 1, only

those which are positive definite are possible choices. Appendix C shows the conditions

necessary for a tensor to be positive definite. From these conditions, Table I lists the pa-

rameter sets which are positive definite and those which are not. The parameter sets which

are positive definite are numbered in Table 2 for ease of reference.

To determine which of the positive definite parameter sets best fits experimental test results,

the parameter sets are used analytically in a comparison with off-axis test results and are then
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Table1. PossibleSij Parameter Sets Marked As Positive Definite or Non-Positive Definite

Angle Set
(15 %30 %45 o)

n6A 2.54504E-00
SeSA 1.96639E-13
511 2.34704E-14
Sz= 3.79959E-13
$12 -6.36714E-14

Positive Definite

nsB 2.53355E-00
S.. 1.80580E-13
S. 1.05681E-14
S=z 2.63695E-13
S12 2.26620E-15

Positive Definite

nec 3.04940E-00
S,c 1.26342E-12
$11 1.49223E-13
S_z 2.86855E-12
Stz -4.38706E-13

Positive Definite

n_o 3.18540E-00
Sseo 1.83907E-12
S, 1.10652E-13
Sz2 3.57840E-12
St= -7.48855E-14

Positive Definite

Angle Set
(10 0,30 °,45 °)

n6A 2.54504E-00
Sm 1.96639E-13
$11 3.46034E-15
S_z 3.19929E-13
S;. -2.36515E-14

Non-Positive Definite

ned 2.53355E-00
Ss6e 1.80580E-13
$11 9.79461E-16
S== 2.34929E-13
Slz 2.14432E-14

Non-Positive Definite

n6c 3.04940E-00
S,c 1.26342E-12
S, 2.26566E-14
Sz= 2.48885E-12
St= -1.85573E-13

Non-Positive Definite

nso 3.18540E-00
S.o 1.83907E-12
$11 1.17136E-14
S=z 3.28159E-12
Slz 1.22990E-13

Positive Definite

Angle Set
(10 °,15 °,45 °)

n_ 2.54504E-00
Sen 1.96639E-13
Sll -8.53148E-15
S_ -6.57692E-14
$I= !.75!94E-!3

Non-Positive Definite

ns. 2.53355E-00
S.. 1.80580E-13
$11 -4.76695E-15
S2z 5.01046E-14
Slz 1.16729E-13

Non-Positive Definite

nsc 3.04940E-00
S,c 1.26342E-12
$11 -5.31935E-14
Szz 4.92545E-14
$12 1.07215E-12

Non-Positive Definite

neo 3.18540E-00
Seeo 1.83907E-12
$11 -4.75791E-14
Szz 1.37453E-12
Slz 1.10616E-12

Non-Positive Definite

Angle Set
(lo o,15°,30 °)

n6A 2.54504E-00
Ss_ 1.96639E-13
$11 -1.07261E-14
S2z -1.04893E-12
$I2 2.25771E-13

Non-Positive Definite

n6, 2.53355E-00
$68, 1.80580E-13
S. -5.81861E-15
S_z -4.21020E-13
Slz 4.40965E-13

Non-Positive Definite

nsc 3.04940E-00
Sssc 1.26342E-12
$11 -6.70750E-14
Szz -6.16938E-12
$12 4.39207E-12

Non-Positive Definite

nso 3.18540E-00
Seed 1.83907E-12
$11 -5.84304E-14
Szz -3.48663E-12
Slz 1.35624E-12

Non-Positive Definite
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Table2. PositiveDefiniteParameterSets

ParameterSet

4

S 11

1.49223E-13

1.71360E-14

2.34704E-14

1.10652E-13

1.05681E-14

S 22

2.86855E-12

3.28159E-12

3.79959E-13

3.57840E-12

2.63695E-13

S 12

-4.38706E-13

1.22990E-13

-6.36714E-14

-7.48855E-14

2.26620E-15

S 66

1.26342E-13

1.83907E-12

1.96639E-13

1.18391E-12

1.80580E-13

n6

3.04940

3.18540

2.54504

3.18540

2.53355
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used in a laminate analysis to compare with angle-ply laminates.

best fits the experimental data is chosen.

The parameter set which

2.4.5.1 Off-Axis Test Comparison

The expression for ce in an off-axis specimen (2.56) is

F.s = A66_36 + _B°6 [SllCOt2(p + (2S12 + $66)+ S22tan2q)]_-o._6 +1
n6+ 1

(2.61)

From this expression, E6 may be plotted against _6 for any desired off-axis angle (p. A simple

program was written for equation (2.58) that uses $11, S2z, $12, S., n 6, and (p as input param-

eters and produces data for (_6 versus _e. These data were plotted against experimental data

and the plots are shown in Figure 12 through Figure 16 for the various parameter sets.

Parameter set 2 (Figure 13) fits the experimental data most accurately in an average sense.

Parameter sets 1,3,4, and 5 all seem to match the 15°, 30 °, and 45 ° experimental data very

well. However, they do a poor job of modelling the 10° off-axis behavior. This is to be ex-

pected because, as Table 1 shows, these parameter sets were all derived from the combina-

tion of t5 °, 30 °, and 45 ° off-axis tests. Parameter set 2, however, was derived from the

combination of 10°, 30 °, and 45 ° off-axis tests. Although it matches these tests well, parameter

set 2 also does an adequate job of modelling the 15° off-axis test.

2.4.5.2 Angle-Ply Laminate Comparison

Unlike the off-axis lamina tests, the loading within the layers of a laminate is not proportional.

Therefore, no simple expressions exist for strain in terms of stress. Instead, the endochronic

equations must be integrated throughout the laminate's load history. This is done in a step-
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wise fashion and for each step, the loading is assumed to be proportional. The step-iterative

constant stress and constant strain algorithms developed in Chapter 3 were used in a finite

element program to analyze laminate problems using a four element mesh. The flow charts

for this program are analogous to those in Figure 30 and Figure 32 in Chapter 3.

The output from the finite element analysis was plotted against the experimental data I for

[ ± 10],, [ ± 20],, [ ± 30],, and [ ± 45], angle-ply laminates. These plots are shown in

Figure 17 through Figure 21. Examining these figures shows that parameter set 2

(Figure 18) also fits the laminate experimental data most accurately. In fact, the correlation

may be described as excellent. Many of the other parameter sets match one or two of the

laminate tests well, but caused the solution algorithm to diverge for the other tests. This di-

vergence is caused by certain stress components decreasing in magnitude (unloading) and

is discussed in more detail in Chapter 4.

From the off-axis and laminate test comparisons, it is obvious that, overall, parameter set 2

correlates best with experimental results. With this parameter set chosen, a complete set of

endochronic constants has been derived. The complete set of endochronic parameters are

shown in Table 3. From this point on, these are the parameters used in all analyses.

2.5 Summary

This chapter has shown the development of a full set of three-dimensional endochronic

equations, the development of the incremental form of these equations, and the experimental

determination of a complete set of endochronic constants. The endochronic equations, based

on the Conservation of Energy and the Dissipation Inequality, are slightly different in form
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Table3. "Best Fit" Set of Endochronic Parameters for AS413502 Graphite.Epoxy

A1t = 5.12687E-08

A=_ = 6.55133E-07

Sll = 1.17136E-14

S2= = 3.28159E-12

Btt = 1.90645E-16

n_ = 2.44791E-00

At= = -1,70722E-08

A44 = 2.17931E-06

SI= = 1.22990E-13

S44 = 0.00000E-00

B°== = 3.14838E-04

n= = 2.45967E-00

A23

A6G _---

S23

S66

B%6 =

n G

-4.35111E-07

1.18373E-06

3.28159E-12

3.28159E-12

1.00000

3,18540E-00

where

Aij units are i/psi

All other parameters are dimensionless
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from Pindera and Herakovich's lg equations, due to a softening rather than stiffening behavior

for compression loading in the fiber direction.

The incremental form of the endochronic equations allows them to be used in a finite element

program. During each increment of loading, stress components are assumed to be propor-

tional to one another and to the loading increment. This allows explicit integration of the

equations. The final incremental form of the equations is a summation expression which may

be implemented into a finite element or laminate analysis program.

Determination of the endochronic constants required analyzing uniaxial compression tests,

off-axis tension tests, and Iosipescu shear tests. The final set of eighteen endochronic pa-

rameters obtained is unique to AS4/3502 graphite-epoxy. These constants are further unique

in that they were derived assuming compression loading in the fiber direction.
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3.0 Finite Element Program AMNISAP

3.1 Introduction

Out-of-plane interlaminar stresses are present in boundary layer regions near all free edges

of notched angle-ply laminates subjected to in-plane loading. In order to account for this in

a finite element analysis, three-dimensional elements are required. This study uses a three-

dimensional, material nonlinear finite element program which is a modification of an existing

linear elastic three-dimensional program ;. The present program is called AMNISAP, which

is an acronym for Anisotropic Material Nonlinear Inversion Symmetric Analysis Program.

Because of the extreme stress gradients present in the immediate region of the hole, a fine

mesh was used in this region. In order to handle the large storage requirements produced

by the fine mesh, a large capacity computer was necessary. Storage and run time efficiency

were increased by utilizing an inversion symmetry condition and by running the program on

a computer with vector processing capabilities.
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Incorporation of the endochronic constitutive equations into a finite element program requires

solving a set of nonlinear equations. There are many algorithms which may be used to solve

such equations; each has its own advantages and disadvantages. This chapter examines

some of the commonly used algorithms. The two algorithms used in the finite element pro-

gram AMNISAP are developed and described in detail in this chapter.

3.2 Inversion Symmetry

Inversion symmetry is a symmetry condition present in all anisotropic shells and plates whose

geometry, elastic coefficients, boundary conditions and loading are 180 degrees rotationally

symmetric about some axis _. This axis of symmetry, commonly referred to as the center of

symmetry, is normal to the body and intersects the origin of the in-plane coordinate axes. The

two-dimensional inversion symmetry transformation consists of rotating the shell or plate

through 180 degrees about the axis of symmetry. Defining an x_ coordinate system (i = 1,2,3),

with the x3 coordinate the axis of symmetry, a symmetry transformation changes the coordi-

nates x_ (a = 1,2) of each material point of the shell or plate into -x_. Figure 22 shows an

anisotropic shell exhibiting the required conditions for inversion symmetry.

A plate's requirements are less stringent than a shell's requirements and are listed below.

INVERSION SYMMETRY PLATE REQUIREMENTS:

GEOMETRY

d(xl,x 2) = d( -xl, -x2)

ELASTIC COEFFICIENTS
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C(_pxp(Xl,x2)= Cal3._p(- xl,- x2)

Foq3yp(Xl,x2) = Fc(pyp(- Xl,- x2)

Del]yp(Xl, x2) = D_IByp(- Xl, -- X2)

BOUNDARY CONDITIONS

B(xI,x2)= B( - xI,- x2)

LOADING

P(xI,x2)= p( - xl,- x2)

M(x 1,x2) = M( -x 1, -x2)

In the above, d is the distance from the center of symmetry to the plate boundary, Ca[]y p are the

extensional stiffness coefficients, F_Bypare the bending-extension interaction coefficients, and

Dopypare the bending stiffness coefficients. B represents the boundary conditions, P repres-

ents the in-plane loads, and M represents moment (bending) loads. The response of an in-

version symmetric plate to this loading will follow the relationships below.

INVERSION SYMMETRIC PLATE RESPONSE:

DISPLACEMENTS

Ul (xl, x2) = Ul ( - x1, - x2)

U2 (Xl, x2) = U2 ( - xl, - x2)

W(x 1,x 2) = W( -x 1, -x2)

STRESS RESULTANTS
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e

%1_(xl, x2) = a_l_( - xl, - x2)

o_ (xl, x2) = - o_ ( - xl, - x2)

(_33(xl, x2) = %3 ( - xl, - x2)

where a, 13= 1,2

In the above, U1 and Uz represent the in-plane displacements in the xt and x= directions, and

W represents the out-of-plane displacements. The stresses o'ap are the in-plane components,

o_3 are the out-of-plane shear stress components, and (_33is the out-of-plane normal stress.

From these requirements, it is apparent that an angle-ply laminated plate with a central hole

under uniaxial loading (Figure 23) exhibits inversion symmetry. The center of symmetry co-

incides with the center of the hole.

By combining the inversion symmetry condition with the mid-plane symmetry condition which

is present in all symmetric laminates, only one quarter of the plate need be analyzed

(Figure 23). The mid-plane symmetry condition is invoked simply by fixing the mid-plane

nodal points' out-of-plane displacements W. Exploitation of the inversion symmetry condition

requires modification of the finite element program. Appendix D gives a detailed description

of the modifications required. It is desireable to add a flag variable for each nodal point of a

finite element grid identifying those nodes which are independent and those which are de-

pendent. Once these modifications are made, both inversion symmetric and non-inversion

symmetric analysis may be performed with the same program.
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Figure 23. Inversion Symmetric Quarter Plate Analysis Using 124 Element Mesh
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3.3 Vectorization

Even with the inversion symmetry condition fully utilized, the storage requirements for many

of the analyses performed in this study (dependent upon mesh refinement) were excessive for

the IBM 3090 or 3084 main frame computers at Virginia Tech. Therefore, the Cyber 205 super

computer at the NASA Langley Research Center was used. This machine easily handled the

storage requirements. An added bonus of the Cyber 205 is its parallel and vector processing

capabilities. Using vector instructions, one instruction performs many operations, thus re-

ducing CPU time significantly. The measure used to define this performance feature is

MEGAFLOPS (Millions of Floating Point Operations Per Second). The Cyber 205 operates in

the range of 50 to 200 MEGAFLOPS, depending upon the vector length. Appendix E shows an

example subroutine comparing scalar operations to vector operations.

Because many do-loops in a program are not candidates for vectorization and because there

are usually only a few do-loops which use the majority of CPU time, it is necessary to be se-

lective when vectorizing a program. To determine which scalar code subroutines were the

most time consuming, a timing option was run which output the total time and time per call

for each subroutine. Table 4 shows these results. It is noted that these results vary de-

pending upon job size. Table 4 shows that subroutines COLSOL (the global equation solver)

and ELKAY (calculates the element stiffness matrices) used 85% of the total CPU time for the

example considered. It is in these subroutines that the largest gains were realized through

vectorization.

Subroutines COLSOL, ELKAY, and STRESS were vectorized by an automatic vectorizing utility

named VAST. The FORTRAN program was run through this utility before it was compiled.

VAST replaces scalar do loops with vector syntax wherever possible. It also returns a listing

file which shows those do loops that were vectorized, lists those do-loops that weren't
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Table4. TimingResultsforScalarLinearCodeUsinga20ElementMesh

Subroutine

ADDBAN

Call Freq.
Counts

20

ADDRES 1

AMNISAP 0

ASSEM 1

BCIMP 1

BEDGE 20

BSTRS 1

CLEAR 1

COLHT 20

COLSOL 2

DMAT 2

DN16 2

DN20 2

DN24 2

ELKAY 20

% Call

Freq.

Total CPU

Time (secs)

CPU Time
Per Call

% Total
CPU Time

6 0.052793 0.002563 1

0 0.000767 0.000488 0

0.015310 0.00O0O0 0

0.045322

0.017408

0.031250 1

0.015625 0

0.95E-06 0

0.031250 1

0.007813 0

0.00O122 0

0.750000 27

0.0O0488 0

0.000122 0

6 0.0O0O2O

0 0.040216

0 0.009775

6 0.002568

0 1.73258

0 0.001442

0 0.000342

0 0.000002 0.95E-06 0

0 0.000002 0.95e-06 0

6 3.78203 0.187500 58

ELS U M 2 0 0.042023 0.015625 1

ER RO R 3 1 0.000O06 0.000002 0

GCOORD 4 1 0.000060 0.000013 0

GPN16 2 0 0.000159 0.000061 0

G PN20 2 0 0.000002 0.95e-06 0

GPN24 2 0 0.00O004 0.000002 0

IN PUT 1 0 0.174491 0.125000 3

INVERT 180 53 0.004861 0.000027 0

LOADS 1 0 0,000744 0.000488 0

LOADV 1 0 0.002422 0,001953 0

STRESS 1 O 0.48726 0.250000 7

SYM DU M P 1 0 0.043696 0.031250 1

T 44 13 0.001848 0.000042 0

WRITE 1 0 0.046071 0.031250 1

TOTAL CALLS = 340 TOTAL CPU TIME = 6.499723 secs
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vectorized,and explains why certain do-loops were not vectorized. In many instances, simply

rearranging a do-loop will allow VAST to vectorize it. In other cases, the algorithm must be

rethought and changed. Besides using VAST on the above subroutines, a few do-loops

throughout the program were vectorized explicitly using vector syntax. The major gains,

however, were obtained through using VAST.

3.4 Program Efficiency Comparison

Table 5 shows vectorized timing results for a 20 element mesh (very coarse) model of a

compression loaded angle-ply plate with a central hole. The comparison is for linear elastic

analysis with no inversion symmetry. It must be noted that significantly larger speed factors

are possible using a more refined mesh due to larger array sizes. Table 5 shows an overall

speed factor of almost 4 with very little effort. Most of these gains were realized by rear-

ranging do-loops within the subroutines.

Table 6 compares inversion symmetry analysis (which requires a quarter plate) with half plate

and fixed node quarter plate analysis for a compression loaded r =t=30], laminate with a

central hole. The fixed node quarter plate analysis is performed with the nodes along the y-

axis fixed in the x-direction. These are approximate boundary conditions which give errone-

ous results in regions close to the y-axis but give acceptable results elsewhere 1. Inversion

symmetry results agree with half plate results everywhere. Note that the half plate storage

requirements are more than 2.5 times the inversion symmetry requirements, while the inver-

sion symmetry requirements are only 1.2 times greater than the fixed node quarter plate re-

quirements. Half plate CPU time is more than 3.0 times that of inversion symmetry, yet

inversion symmetry CPU time is only 1.3 times greater than that of the fixed node quarter plate

analysis. Half plate total run cost is 2.9 times that of inversion symmetry, while inversion
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Table5. VectorizingTimingResultsforNon-InversionSymmetricLinearElasticAnalysisUsinga
20 Element Mesh

Vectorization
Modifications

AMNISAP in original form -
no vectorization

VAST applied to AMNISAP
(only subroutines ELKAY,
COLSOL, STRESS)

VAST applied to AMNISAP -
2 do-loops in ELKAY
modified (80 & 85)

VAST applied to AMNISAP -
2 more do-loops in ELKAY
modified (60 & 70)

VAST applied to AMNISAP -
2 more do-loops in ELKAY
modified (90 & 91)

VAST applied to AMNISAP -
do-loop 100 modified
in COLSOL

Total
Run Time

(CPU'S)

6.50

3.49

3.18

3.02

1.75

1.66

Overall

Speed
Factor

1.00

1.86

2.04

2.15

3.72

3.93

COLSOL

Speed
Factor

1.00

5.44

5.42

5.39

5.41

7.61

ELKAY

Speed
Factor

1.00

1.65

1.91

2.O9

6.97

6.97

STRESS

Speed
Factor

1.00

1.22

1.22

1.22

1.22

1.22

Speed Factor = Original Run Time
Vectorized Run Time
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Table6. InversionSymmetryResultsfor [=t:30]2Laminatewitha CentralHoleRunon Scalar
Code

Parameters

# of Elements

# of Nodes

# of Equations

# of Global Stiffness Terms

Half
Plate

200

2004

5338

1,809,178

Inversion

Symmetry

100

1041

2669

630,897

Fixed Node
1/4 Plate

100

1041

2698

406,513

Total Storage (words)"

Maximum Half Bandwidth

Mean Half Bandwidth

2,886,800

5320

338

1,163,400

2606

236

CPU Time"

Run Costs (CRUs)*

324.1

356.4

104.8

124.3

943,400

366

150

71.4

99.2

* NASA Langley's Cyber 205
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symmetryanalysis'total run cost is only 1.3 times that of fixed node quarter plate analysis.

In conclusion, for a fraction more of the fixed node quarter plate computer resources, half

plate results are realized by using inversion symmetry at a significant reduction in computer

resources.

If the results from Table 5 and Table 6 are combined, a total speed factor of 12 is realized

when comparing half plate non-vectorized analysis to inversion symmetric vectorized analy-

sis. Note also that this result is conservative being based on the speed factor for the 20 ele-

ment mesh.

3.5 Numerical Solution of Nonlinear Algebraic Equations

Nonlinearities in structural mechanics exist in two forms -- material nonlinearities and ge-

ometric nonlinearities. Material nonlinearities arise from nonlinear constitutive laws. Ge-

ometric nonlinearities are the result of finite changes in the geometry of the body. Many

numerical solution techniques are currently available for solving the set of nonlinear algebraic

equations arising from both causes. However, all of these techniques have limitations. Some

methods work well for geometric nonlinearities while others work best for material nonline-

arities. The accuracy and efficiency of each method varies widely as well. All of these factors

and features must be accounted for when choosing a method for a particular application.

This study focuses on material nonlinear finite element analysis. The solution techniques

most commonly used for material nonlinearities are: (1) Incremental or stepwise procedures,

(2) Iterative procedures, and (3) Step-iterative or mixed procedures. Each of these methods

has its own distinct advantages and disadvantages and each one was considered as a sol-
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utiontechniquein this study. Commonto all of thesetechniquesis the setof equationsthey

mustsolve.Thissetis typicallywrittenfor a single element as

where

[K ] {U} = {F} (3,1)

[K] = [K] + [K NL]

[K"'] = [K"'({u}, {F})]

{U} -- nodal displacements

{F} -- nodal forces

[K] -= stiffness matrix

[K] - linear portion of stiffness matrix

EK NL] -- nonlinear portion of stiffness matrix

Figure 24 shows a typical force/displacement curve for a given element and a typical nonlin-

ear stress/strain curve. Following is a discussion of the solution techniques.

3.5.1 Incremental Procedures

Incremental procedures involve dividing the load into a series of increments. A solution is

generated for each load increment until the final load is reached. Normally, the load incre-

ments are equal in magnitude but this is not a requirement. The stiffness matrix [-K'I is a

constant for a given load step, but may change for each load increment. This matrix is re-
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Figure 24. Typical Nonlinear Curves
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ferred to as the tangent stiffness matrix in this procedure. For each incremental set of loads,

a set of incremental displacements are generated. The final set of loads and displacements

is the sum of the incremental loads and displacements. This is written symbolically as

M
{F} = {F0} + 7., {_FI} (3.2)

I=1

M
{u} = {u0} + z {Au,}

!=!

where the A symbol represents an increment, M is the total number of increments, and sub-

scripts 0 refer to the initial state. At a given load step,

J

{Fj} = {Fo} + 7_, {AFi} (3.3)
i=1

J

{uj} = {Uo}+ z {_u,}
I=I

The incremental element equations are then written as

[KI- I] {AUl} = {AFi} for i = 1,2,3 ...... M (3.4)

where

[K,-I] = [K,_1({u,__}, {_,_,})]

Figure 25 depicts this incremental procedure.

The accuracy of the incremental method is very dependent upon the load step size. The ac-

curacy can be improved by taking smaller load steps. However, as load step size decreases

and the number of load steps increases, the efficiency of the procedure decreases because

[K'l-1] must be computed for each load step.
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3.5.2 Iterative Procedures

Iterative procedures consist of a sequence of calculations in which force equilibrium is more

exactly satisfied with each new iteration. The sequence of calculations (or iterations) is con-

tinued until the force imbalance (or residual) falls below an acceptable magnitude, The full

force is applied at each iteration of this method. After each iteration, the force residual is

calculated and used in the next iteration to compute the displacement.

The two most common iterative techniques used in finite element analysis are =:

tional iterations (or successive substitutions) and (2) the Newton Raphson method.

these methods, the finite element equations are written

(1) Func-

In both of

[K]{U} = {F} - {FNL} (3.5)

where

[K] -

{F NL} __

linear portion of stiffness matrix

{F} - applied load vector

psuedo load vector resulting from [K NL] {U}

3.5.2.1 Method of Functional Iterations

This method seeks to find {U} for a given {F }. It starts with an initial estimate of the dis-

placements {U} (solving the linear part of the finite element equations yields a reasonable

estimate) and performs the following iteration sequence

[K]{U (r)} = {F} - {FNL({u (r-l)})} (3.6)
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where r, r - 1 refer to the iteration cycle. The sequence of iterations is continued until the

difference in displacements between successive iterations falls below a preset value. The

linear stiffness matrix [K ] is decomposed only once and remains constant throughout the it-

erative process -- the changing nonlinear terms are contained in the psuedo load vector

{F"L}. Figure 26 shows a schematic representation of this iterative procedure for a one degree

of freedom system.

3.5.2.2 Newton Raphson Method

In the Newton Raphson method, a force residual represents the initial unbalance between the

two sides of equation (3.5). This force residual is written

{f(u)} = EKJ{U} - {F} + {F"'} (3.7)

This method expands the force residual {f(U) } in a Taylor Series about the initial estimate.

•a{f (u)}
{f(U + AU)} = {f(U)} + t ]{AU} + Error _{AU}] 2

_{U}
(3.8)

An approximation used in the Newton Raphson Method is to truncate the series after two

terms which yields the error term in the above expansion. A requirement of the method is to

set the expanded force residual to zero, {f(U + AU)} = {0}. These approximations yield

[a(f(u)},
j{AU} = - {f(U)} (3.9)

Now from equation (3.7), with {F} independent of {U}

.a{f(U)}, .<_{F NL} | "
[o-_-U_' = [K] + [_-_--_-., = [K] + [K(U)] (3.10)
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Combining (3.9) and (3.10) gives

^

[K + K(U)] {_U} = - {f(u)}

In terms of the iterative cycle, this is written

[ - ][K] + [K(U (r-l)) ] {_,U (r)} = - {f(u(r-l))} (3.11)

Note that each iterative cycle of the Newton Raphson Method requires computation of {f(U)}

, computation of[ t_(U) ], and decomposition, forward reduction, and back substitution to

compute { AU }. Figure 27 shows a schematic representation of this iteration procedure,

where {K'} is the tangent stiffness matrix and the superscript r represents the iteration num-

ber.

3.5.3 Step-lterative Procedures

Step-iterative procedures are simply a combination of incremental procedures and iterative

procedures. These method yields higher accuracy but may require more computational effort.

A typical step-iterative method is depicted in Figure 28. More details on this method are

presented in a later section.

3.5.4 Procedure Comparison

The advantages of the incremental procedures are many fold, not the least being simplicity.

They are easy to program, they admit a simple physical interpretation, they are applicable to

nearly all types of nonlinear behavior, and they provide a relatively complete description of
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the load-deformation behavior. However, their disadvantages are just as numerous. Incre-

mental procedures require solving a linear system of algebraic equations at each step which

necessitates formation of [K], and requires decomposition, forward reduction, and back sub-

stitution to compute {/tU }. Also, there is no rational way of selecting step size or checking

convergence of the solution; hence the accuracy of the solution tends to drift.

The advantages and disadvantages of t_e iterative methods must be separated to include

those of the functional iterative method and those of the Newton Raphson method. The ad-

vantages of the functional iterative method are its simplicity of application -- the stiffness

matrix [K ] is decomposed only once - and the solution's accuracy may be specified through

the convergence criterion. However, the functional iterative method is not suitable for highly

nonlinear problems. It displays slow convergence (and sometimes divergence) for elasto-

plastic or near elasto-plastic problems, and the solution converges in a linear fashion requir-

ing many iterations.

The Newton Raphson method's advantages are that it works well for highly nonlinear prob-

lems, and that it converges quadratically requiring fewer iterations (not necessarily faster CPU

time). Its disadvantages include slow convergence for highly nonlinear problems, conver-

gence problems due to oscillation about a local maximum or minimum point, and a high

computational expense because [K + I_ ] is decomposed many times.

The step iterative procedures combine the advantages of the incremental and iterative meth-

ods and tend to minimize the disadvantages. Because of this, step iterative methods have

become increasingly prevalent in modern nonlinear finite element analysis.

Many factors were considered when choosing a nonlinear solution technique for the finite el-

ement program of this study. The first of these factors was the complexity of the endochronic

equations. Explicit differentiation with respect to the displacements, as required in the Newton

Raphson method, is very difficult if not impossible with the form of the endochronic equations.
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Numerical differentiation requires still more complexity and computational time as well as an

additional approximation in the solution. The form of the endochronic equations was also

considered -- strain is written in terms of stress. Although a rederivation of the equations

could yield stress in terms of strain, the endochronic parameters are much more difficult to

determine with the equations in this form. Also, as shown in Chapter 2, the equations can only

be integrated incrementally, with proportional loading assumed over each increment. There-

fore, the form of the endochronic equations limited the choice of solution techniques. The final

factor considered was the size of the finite element analysis. A method requiring many de-

compositions, forward reductions, and back substitution of the stiffness matrix would consid-

erably increase CPU time.

With all these factors considered, two step-iterative procedures were chosen - the constant

stress method and the constant strain method. These methods are discussed and developed

below.

3.5.5 Constant Stress Method

The constant stress method is an initial strain method in that the total strain is separated into

a conservative portion and a non-conservative portion. The non-conservative strain (also

called the irreversible strain) is integrated separately as a psuedo force array which is added

to the applied force array to yield the total force array. Therefore, all the nonlinearities in the

equations are represented by this psuedo force array. Because of this, the stiffness matrix

[K ] is decomposed only once in the solution process. This reduces CPU time and increases

computational efficiency. The initial strain formulation of the finite element equations is shown

below.

<_) = { R> + {I_IR} (3.12)
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{_R} __ [AI{_}

{_,R} = {_m(z)}

where

{R} _ reversible portion of strain

{s IR} - irreversible portion of strain

z - intrinsic time scale

Therefore,

{o}= [A]-I{_R} = [A]-I{_-_,R} (3.13)

The strain energy of an element (A °) is expressed as

where

_V,I((E}T{o} -- {_IR}T{(_})dv (3.14)

ve --= volume of an element

Combining (3.13) and (3.14) gives the strain energy in the form

Ae= _V,(_{E}T[AI-I{E}- _{E}T[AI-I{EIR}- _{EIR}T[A]-I{E} + _{_IR}[A]-I{EIR})dV

(3.15)

The strain-displacement equations can be written
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{E}= [B]{U} (3.16)

where [B] is a matrix containing the derivatives of the finite element interpolation functions.

The transpose of the strain vector is

{_}T = {u}T[B]T

Therefore,

Ae = j'V'_({u}T[B]T[A]-I[B]{U} -- 2{u}T[B]T[A]-I{F.IR} + {_IR}T[A ] - I{I;IR }) dV (3.17)

The potential energy of an element due to externally applied forces is given by

r e = _ {u}T{pe} (3.18)

where

{pe} _ applied load vector for a given element

The total potential energy of an element (H °) is the sum of the strain energy (A °) and potential

energy (r.).

FIe = A e + r e (3.19)

The total potential energy of the finite element model is the sum of the elemental potential

energy over the elements.

N
r[ = Y. rI e (3.20)

e=l

Therefore, the total potential energy is
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(3.21)

Sv.<,'">+,,,'<,'">°v-<u>+<,+>]

where

N --- number of elements

In order to obtain the correct displacement solution solution from (3.21), the total potential

energy ]'I must be minimized. This is done by taking the partial derivative of the total potential

energy with respect to the displacements as follows

Defining:

al-I N
- _o)= e_:,I I''tBi+tAI-'tB]dv:..,v {u:}- .,vr,"tB]+tA]-'{"")dV- <:P+).,i <3.22)

I-__ I

a{u}

IKel = j-v,IBITIA]- 1[B] dV

and

(f.L) = j-v,iBITiA]-I{ m)dV

{le) = {i.L} + {pe}

where

[Ke] -'- element stiffness matrix

{_L} _= element psuedo load vector
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{pe} = element force vector

{fe} =_ element total load vector

gives

N

e_l{[Ke]{u} _ {re}} = {0}

where

N - number of elements

Writing the above in global matrix form yields

[K]{U} = {F} (3.23)

where

{F} = {F NL} + {P}

{F NL} = _, _v,[B]T[A]-I{I;IR} dV
e I

- global psuedo force array

N

{P} = T. {pe}
e=l

- global applied force array

The iterative form of equation (3.23) is written as

[K]{UI r)} = {FNL({Au}r-1)})} + {PI}
(3.24)

where

r --- iteration cycle
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i - load step number

Note that the full load is applied at each step resulting in total (as opposed to incremental)

displacements. This differs somewhat from true incremental procedures in which only an in-

cremental load is applied at each step. Although the full load and full displacements are re-

presented in the equations, the psuedo force array {F "L } is a function of the incremental

stresses {Aa } at the previous iteration.

With the equations written in the above form, the constant stress method simply defines the

order of calculations. This order of calculations is outlined below:

1) For a given load step i and iteration r, convergence is checked comparing the total dis-

placements at the present iteration {U! ,)} with the total displacements at the previous iteration

{ul'-"}.

2) The element strains are computed from the element displacements

{I;l r)} = [B]{Ul r)} (3.25)

3) The stresses in the element are found from the strains at the current iteration {F.,! r) } and the

irreversible strains at the previous iteration {sl R_r-1) }

{(3"Ir)} = [A]-I{{EI r)} -- {EIR{r-I)}} (3.26)

4) The incremental stresses in the element are calculated by subtracting the stresses from the

previous load step from the stresses at the present load step i

{ oIr)}= <oF)}- r-)1} (3.27)
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5) Theirreversiblestrainsfrom the present iteration r are computed using the incremental

stresses {AO'! r)}

6) Finally, the psuedo forces for the r + 1 iteration are calculated from the irreversible strains

at the present iteration r

{FiNL (r + 1)} = {FNL({EIR (r)})} (3.29)

If displacement convergence is satisfied, the load is incremented and the process is repeated.

If displacement convergence is not satisfied, the above sequence is repeated in a do-loop until

a convergence criterion on the displacements is satisfied. The constant stress method gets

its name because the sequence of calculations are performed at essentially a constant stress

level. The displacements and thus the strains change during the iteration process until con-

vergence is satisfied. Figure 29 gives a schematic representation of the constant stress

method and Figure 30 shows a flow chart for the method.

3.5.6 The Constant Strain Method

The constant strain method is also an initial strain method and uses the same form of the finite

element equations as the constant stress method. It differs only in the sequence of calcu-

lations required to solve the finite element equations. Whereas the constant stress method

iterations were performed at essentially a constant stress level, the constant strain method

iterations are performed at essentially a constant strain level. The stresses and thus the ap-

plied loads change during the iteration process until a convergence criterion is satisfied.

Whereas the constant stress method consists of one do-loop, the constant strain method

contains two do-loops -- an inner loop and an outer loop. The inner loop iterates at a given

Finite Element Program AMNISAP 100



F

F_""

F2NL

_L
FNL

FI

/
f

J/

Ul U z U3 U

Figure 29. Force/Displacement Curve for Constant Stress Method

Finite Element Program AMNISAP 101



No

No

Calculate and assemble element stiffnessmatrices and nodal forces

_r Solve for displacements

[ Check for convergence

I Calculate strains from displacements

t Calculate stresses from strainsand previous plastic strains

Calculate incremental stresses

Calculate plastic strains fromincremental stresses

Calculate psuedo force arrayfrom plastic strains

i Convergence?I

Yes

' Increment applied force array

Check if force array is greaterthan final specified force an'a 7

Yes

[ Stop

I

I End

o
I:1

Figure 30. Flow Chart Showing Constant Stress Method

Finite Element ProgramAMNISAP 102



strain level until a stress convergence criterion is satisfied. The outer loop iterates until a

displacement convergence criterion is satisfied. Once the the outer loop has converged, the

procedure is incremented. The constant strain method is outlined below:

1) For a given load step i and iteration r, convergence is checked comparing the total dis-

placements at the present iteration {U! r) } with the total displacements at the previous iteration

{ ul,-')}.

2) The element strains are computed from the element displacements

{GI r)} = lEVI{Of r)} (3.30)

3) The stresses in the element are calculated from the strains of the current iteration {_!r)} and

the irreversible strains at the previous iteration {_IR(,-ll}.

(3.31)

4) Convergence is checked comparing the total stresses at the present iteration {el rl} with the

stresses at the previous iteration {_lr-1)}.

5) The incremental stresses in the element are calculated by subtracting the stresses from the

previous load step from the stresses at the present load step i

(3.32)

6) The irreversible strains for the present iteration r are computed using the incremental

stresses {_o'! rl }

{_,:R (r)}_ {EIR({AoIr)})} (3.33)
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7) Ifstressconvergenceis satisfied,thenthesolutionproceeds.If it is notsatisfied,thesol-

utionreturnsto step3.

8)Thepsuedoforce array for the r + 1 iteration is calculated from the irreversible strains at

the present iteration r

= (3.34)

If displacement convergence is satisfied, the load is incremented and the process is repeated.

If displacement convergence is not satisfied, the equations are solved for the r + 1 iteration

and the process is repeated. Figure 31 illustrates a schematic representation of the constant

strain method and Figure 32 shows a flow chart.

3.6 Summary

The three-dimensional material nonlinear finite element program AMNISAP contains both the

constant stress and the constant strain methods of solution. The user may choose the desired

method. The reason for incorporating both methods into the program is that the constant

stress method works better for some problems while the constant strain method works better

for others.

The constant stress method has been previously shown to be inherently unstable under cer-

tain circumstances 46; it may suddenly and catastrophically diverge. However, under stable

conditions, it converges rapidly. On the other hand, the constant strain method is inherently

stable, but converges much slower than the constant stress method. It too may diverge, but

does so in a progressive, not catastrophic, manner.
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AMNISAPis a multipurpose program with options to run inversion symmetric or non- inversion

symmetric analysis, and linear material or nonlinear material analysis. Within the nonlinear

material option, the user may choose between two solution methods -- the constant stress

method or the constant strain method. Finally, the program is written in Fortran 77 so that it

is interchangeable with any computer facility having a Fortran 77 compiler.
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4.0 Laminate Response

4.? Introduction

This chapter presents an analysis of unnotched and notched angle-ply laminates loaded under

uniaxial compression. In each analysis, analytical and experimental results are compared.

Also, where appropriate, comparison is made between material linear and material non-linear

predictions. The angle-ply laminates considered experimentally are: r( =t=10)12]o ,

r( ± 20)12]=, r( ± 30)_2-_,, and [( ± 45)12],. Although these test laminates had 48 plies, they

were modeled in the finite element analysis as having only 4 plies (i.e. r ± 10]=, r -t- 20],,

l- ± 30-l= , and r ± 45], ) due to computer storage limitations. The analysis of unnotched

laminates does not include edge effects and gives identical classical lamination theory results

whether 48 plies or 4 plies are modeled. On the other hand, the analysis of laminates with

holes does include edge effects around the hole boundary. These edge effects are dependent

on the laminate stacking sequence. Since 48 ply laminates could not be investigated, it was

decided to investigate four ply laminates which have the same alternating -4- _0 sequence as

the 48 ply laminates. It is believed that the overall trends in the 4 ply laminates are similar

to those in the 48 ply laminates. It is also important to note that the hole diameter is not the
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samefor all the notched laminates. Table 7 gives the dimensions of the laminates tested.

The dimensions of the finite element models are identical to those in Table 7 except for the

thickness dimension which was 0.01" in all finite element models.

Note that the [( ± 10)t=], and [( ± 20)12], laminates with 1/2 n diameter holes have a w/d

(width to diameter) ratio of 5 while the other laminates have a w/d ratio of 10. The w/d ratio

of 5 was used to investigate the influence of the width to diameter ratio on failure. In order

to differentiate between the unnotched and notched laminates, they are referred to as

[ ± q_], and [ :1: ((P)lz],, respectively.

4.2 Unloading Considerations

In the course of performing the finite element analysis, it was observed that the solution would

converge quite rapidly for each load step up to a critical load level; however, at this critical

load level, the solution would diverge rapidly. For some cases, this divergence phenomenon

would occur before the load reached the experimentally observed failure load. Close inves-

tigation into this problem revealed that a component (or possibly many components) of stress

was unloading at the critical load. Because the unloading causes a change in the sign of the

slope (Figure 33) on the component's stress-strain diagram, the solution algorithm (either

constant stress or constant strain) can not find the correct value of stress. The solution os-

cillates back and forth (with each oscillation growing larger) in an attempt to find the correct

A(_ i. Figure 33 shows this phenonomen schematically for the constant strain algorithm.

In Figure 33, the symbols oC_ and oi represent the stress level at the critical load and after the

critical load step, respectively. The letter i represents the iteration number. At the critical

load step, EC represents the strain from the initially applied load, and because the irreversible
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Table7. TestSpecimen Dimensions

Layup

# of

Specimens
Tested

Length Width
(in.) (in.)

Thickness

(in.)

Hole
Diameter

(in.)

Unnotched Laminates

[ -I-- 10],

[ ± 20],

[ -l- 30],

[ 4- 45],

10.0

10.0

10.0

10.0

2.0

2.0

2.0

2.0

0.25

0.25

0.25

0.25

Notched Laminates

[( ± 10)12],

[( ± 10)1z],

[( ± 20)1z],

[( ± 20)12],

[( ± 30)1z],

[( ± 45)1z],

10.0

10.0

10.0

10.0

10.0

10.0

2.5

2.5

2.5

2.5

5.0

5.0

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.50

0.25

0.50

0.50

0.50
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strainhasnot yet been calculated, (_C1 corresponds to the linear elastic stress. The irre-

versible strain _CIR is then calculated from (_C1 (3.29). Psuedo loads are calculated from sC_R

(3.30) and the process is repeated until a convergence criterion is satisfied at the fourth iter-

ation. The stress _C4 corresponds to the strain _C. At the following load step, the strain s is

calculated from the applied loads and psuedo loads. The stress _1 is calculated from the

strain E and _C_R from the previous load step. The irreversible strain _R is calculated from

o 1, but because the stress-strain curve slopes downward below stress level ol, the program

calculates a large indeterminate value for E_R (imagine the curve continuing with no inflection

point). At the second iteration, E_R is used to calculate 0 2. The irreversible strain _IR calculated

from (_z is very small. At the third iteration, (_3 is larger than (_1 due to the small value of E_".

The irreversible strain _I_ calculated from (_3 is larger still than _R and causes the stress (_4 at

the fourth iteration to be negative. When the stress becomes negative, divergence proceeds

rapidly as the upwards and downwards arrows depict.

Although it is unknown whether this unloading phenomonen actually occurs in these lami-

nates, the endochronic theory does predict it. Zinov'ev and Sarbaev 21 show a similar

occurance for an unspecified fiberglass [ ± 40], laminate loaded in uniaxial tension. Figure

5 in their paper shows the normal stress transverse to the fibers ((_=) to be positive initially,

but become negative approximately midway through the loading history. Because Zinov'ev

and Sarbaev used a different formulation of the endochronic equations (i.e. they used multiple

time scales whereas this study only uses a single time scale), it is highly unlikely that this

phenomonen is an error in the formulation of the equations or in the finite element program.

Rather, it appears that it is inherent to the endochronic theory. To prove or disprove whether

the unloading is a real occurrence would require experimental verification.

Because the solution divergence phenomenon sometimes occurs before experimentally ob-

served failure, a condition was imposed in the finite element program which allows the sol-

ution to progress past the critical load level. For the stress components which unload, the

stress increments are set to zero (z_ = O) at the present load step and at all future load
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steps. Thisessentiallyforcesthe components'stress-strainmodulito zerofor the remainder

of the loading history. In this manner, the strain components are calculated, but the stress

components are artificially regulated. Of course, imposing this condition is equivalent to

specifying an unknown, which hinders the solution's accuracy. However, this was found to

be the most effective way to reach higher loading levels. In future sections, this condition is

referred to as the zero-slope condition.

4.3 Experimental Results

Burns et al 1 performed experiments on the laminates listed in Table 7. The specimens were

compression loaded quasi-statically in a rigid frame which provided clamped conditions at the

loaded ends and simply supported conditions at the sides. Two specimens of each laminate

configuration were tested except where noted in Table 7. Further detail of the experimental

procedures is outlined in reference 1

4.4 Finite Element Analysis

The material non-linear, three-dimensional finite element program AMNISAP was used to

generate all the results. The elements used are 16 node, 3-D isoparametric displacement

based elements. For further details of AMNISAP, refer to Chapter 3.

The finite element grid used to model the unnotched angle-ply laminates is an inversion

symmetric 4 element mesh with one element through the thickness of each ply. This coarse

mesh is not sensitive to edge effects and gives results identical to classical lamination theory.
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Thefinite elementgrid usedto model the notched angle-ply laminates with 1/2" diameter

holes is an inversion symmetric 744 element mesh; the 1/4" diameter hole laminates were

modeled with an inversion symmetric 792 element mesh. The meshes for the notched lami-

nates have three elements through the thickness of each ply giving a total of six elements

throughout the thickness of the laminates.

The ends of the laminates were loaded with a force distribution that gave each of the end

nodes an approximately equal displacement. The end loading was modeled with end forces

rather than end displacements so that it was not necessary to decompose the stiffness matrix

for each iteration of the solution.

The load step size for each of the laminates was based upon the experimental failure loads.

Twenty load steps were used as a compromise between accuracy and computational effi-

ciency. The load step size for each laminate was determined by multiplying the experimental

failure loads by approximately 1.2 and dividing by 20. The factor of 1.2 was used to allow the

analyses to load past the experimental failure load if the solution proceeded for 20 load steps.

An exception to this was used in analyzing the [ ± 45], unnotched laminate. The results for

this laminate exhibited more load step size sensitivity than the other laminates. In order to

best match the experimental global stress-strain results, only 7 load steps were used.

Table 8 shows the number of elements, number of nodal points, number of load steps, far field

stress per load step, and the displacement based convergence criterion magnitude for each

of the laminates analyzed.

The constant stress solution algorithm was used in all of the runs. This algorithm converged

much faster than the constant strain algorithm. For laminates whose solution did not proceed

to the experimentally observed failure load, the constant strain algorithm was used in an effort

to advance the solution further. In all cases, no improvement was observed.
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Table8.

Layup

[ -t- 10].

[ ± 20],

[ ± 30],

[ -I- 45],

Finite Element Parameters for Angle-Ply Laminates with and without Holes

Hole
Size

# of
Elements

[( ± 10)1z], 1/4" 792

[( 4- 20)1_], 1/4" 792

[( 4- 10)_z], 1/2" 744

[( 4- 20)1z], 1/2" 744

[( 4- 30);z], 1/2" 744

[( ± 45)_z], 1/2" 744

#of
Nodes

39

39

39

39

3171

3171

2947

2947

2947

2947

# of

Load Steps

2O

20

2O

10

13

12

15

14

13

F.F.S. *

per Load
Step (psi)

5760

2688

1920

6O67

4608

2688

3840

2304

1920

1920

Displacement
Convergence

Criterion

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0001

0.001

0.001

* F.F.So - Far Field Stress
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4.5 Unnotched Angle-Ply Laminates

4.5.1 Global Stress-Strain Response

4.5.1.1 AxiaI Response

Figure 34 shows comparisons of theory and experiment for the axial response of the four

laminates considered. The experimental curves in Figure 34 are the same as those shown

in Figure 18; however, the finite element results are given with smaller load steps in

Figure 34. The curves are included in one figure for ease of comparison. As indicated in the

figure, the comparison between theory and experiment is quite good. The response of the

[ :t: 10],, [ -F 20],, and [ ± 30], laminates is nearly linear to failure whereas the [ ± 45],

laminate exhibits significant nonlinearity.

(I

Comparison between theory and experiment is generally good; however, some interesting

phenomena can be noted. Near the point of failure, the [ =1=10], laminate exhibits more axial

softening response than the [ -4- 20], laminate. This is due in part to the high compressive

stress _1 in the [ ± 10], laminate which causes some fiber direction softening. In addition,

the r ± 10], laminate's response is more dependent upon the fiber direction response. The

fiber direction softening response can be seen in Figure 2 of Chapter 2. Note that at equal

stress levels, the [ ± 20], laminate exhibits more axial softening response than the [ ± 10],

laminate (Figure 34). The [ ± 30], laminate exhibits more nonlinear response than the

[ -4- 20], laminate because of higher magnitudes of (_e (_12) and a greater dependence on the

transverse and shear response. Due to an even greater dependency upon the transverse and

shear response, the [ • 45], laminate shows significant axial softening.

(I
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4.5.1.2 Transverse Response

As can be seen in Figure 35, the agreement between theory and experiment for the trans-

verse strain response of the four angle-ply laminates is generally good, but not quite as good

as that for the axial response. In general, the predicted transverse strain response is stiffer

than the experimental response for all the laminates. The predicted transverse strain re-

sponse of the I- =t=10]= laminate falls between the linear elastic and experiment curves. The

[ • 20], laminate's predicted transverse strain response follows the same trend as that of the

[ -4- 10], laminate. The [ -F 30], laminate's experimental transverse strain response shows

significant softening. Unfortunately, the predicted response does not correlate as well with

experiment, falling between the linear transverse strain curve and the experimental curve.

Agreement between theory and experiment is very good for the r =1=45], laminate in which the

most softening occurs. Considering the degree of softening, the correlation between the

predicted transverse strain response and the experimental transverse strain response is ex-

cellent.

4.5.2 Response in Material Principal Coordinates

Examining the predicted stress-strain response in material principal coordinates reveals some

interesting results. The fiber direction response (Figure 36) is intuitively predictable because

E_R is only a function of cl (2.11). Therefore, the degree of softening is directly related to the

magnitude of (_1. As Figure 36 shows, the magnitude of o 1 is largest in the I- =1=10], laminate

and smallest in the [ 4- 45]= laminate. Therefore, the [ -4- 10], laminate exhibits the greatest

fiber direction softening and the I- + 45], laminate the least. Unlike the fiber direction re-

sponse, the stress-strain response in the other principal material directions is not intuitively

predictable. The non-linear strains in the transverse and shear directions may or may not be

similar to the softening response in pure transverse loading or shear loading, respectively.
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Thetransverse direction response in these laminates can be compared to the transverse di-

rection response under pure compression loading (see Figure 4 in Chapter 2) and to the linear

elastic response (Figure 37). As shown in Figure 37, the [ 4. 10]=, [ ± 20],, and [ + 30]=

laminates show transverse direction stiffening response, and the [ ± 45]= laminate exhibits

softening response. Note that _z is positive in the laminates which show stiffening response

([ 4- 10],, I- ± 20], , and [ 4- 30], ), but is negative in the laminate which shows softening

response ([ 4- 45], ). This stiffening response may be due to the endochronic parameters'

inability to model mixed principal coordinate stress states (_1 is negative in all the laminates);

recall that the parameters were developed from uniaxial tests in which all stresses were of the

same sign. Another possible explanation of this behavior is that the predicted stiffening re-

sponse is real and exists within the laminates. However, without experimental results, it is

difficult to prove or disprove this behavior. As a side note, it is possible that the endochronic

parameters' inability to model mixed stress states caused the predicted global transverse

strain response to be stiffer than experiment (Figure 35) for the [ 4. 10], , [ ± 20],, and

[ 4. 30], laminates. Recall that agreement was good for the [ ± 45], laminate in which the

principal stress states are of the same sign.

The predicted shear response in these laminates is compared to the pure shear loading re-

sponse (Iosipescu test), off-axis loading response, and linear elastic response in Figure 38.

All predicted curves show a softening response; however, the degree of softening differs

among the laminates. The r ± 10], laminate exhibits more shear softening than both the 10°

off-axis and Iosipescu tests. At a shear stress of 2.7 ksi, the predicted shear strain deviates

-7.4% from linear strain, -5.1% from the 10° off-axis test strain, and -8.7% from the Iosipescu

test strain. Both the 10° off-axis and Iosipescu tests show nearly linear response at the low

shear stress level in the r 4. 10], laminate (less than 3 ksi). The [- 4. 20], laminate exhibits

less shear softening than the 15° off-axis test, but slightly more softening than the Iosipescu

test. Actually, within the r 4- 20], laminate, the predicted response is very nearly linear up

to the maximum level of shear stress (4 ksi). At a shear stress of 3.7 ksi, the predicted shear
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strai_deviates-2.1%fromlinearstrain,5.5%from the 15 ° off-axis test strain, and -2.1% from

the Iosipescu test strain. The shear response in the [ 4- 30], laminate is softer than in the

30° off-axis test, but slightly stiffer than in the Iosipescu test. However, the difference between

the Iosipescu test shear response and the predicted shear response is very small. At 7.4 ksi,

the predicted shear strain deviates -11.4% from linear strain, 3.3% from the 30° off-axis test

strain, and -3.0% from the Iosipescu test strain. The [ 4- 45], laminate shows more shear

o_,,,_,,,,,u response than '=- --' ...... l=_i,u_ p_=_.u -- but not by a large degree. The 45 ° off-axis test

does not load to a high enough stress level to make a useful comparison with predicted re-

suits. A useful feature of the [ -i- 45], laminate is that the shear response can be extracted.

A plot of the shear response within the tested r :E 45], laminate is included in Figure 38.

Comparison between the finite element prediction and the experimental curve reveals excel-

lent agreement. At 12.5 ksi, the predicted shear strain deviates -36.4% from linear strain,

-6.5% from the Iosipescu test strain, and only 4.4% from the [ ± 45], laminate measured

strain.

The previous comparison shows how dependent the predicted shear response is on the stress

component ratios. This phenomenon is also obvious from the off-axis unidirectional tests.

The ratios of the principal stress components greatly influence the shear stress-strain profile.

However, as noted previously, unlike the off-axis unidirectional tests, the [ -l- 10],, I- -i- 20],,

and [ 4- 30], laminates exhibit material principal stress components of opposite signs. Be-

cause the endochronic constants were not derived in this stress environment, the shear re-

sponse for these laminates is questionable. It is encouraging, however, that within the

[ 4- 45], laminate (which has principal stresses of the same sign), the experimental shear

response and predicted shear response agree very well.
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4.6 Notched Angle-Ply Laminates

4.6.1 Far-Field Axial Response

Ac rnontlnn_rl nr_wir=Helw the= finlf¢= ¢=l<=rn_nf _n_h,eic fnr I_minotc=e I*lifh h_lc=e rllrl n_f Ir_¢,l frt

the experimentally observed failure load in all cases. This was true of the r( + 10)1z], and

[( ± 20)1z], laminates with 1/4" diameter holes. However, as Figure 39 shows, far-field axial

stress-strain correlation between theory and experiment for these laminates and for the

[( ± 30)_=], and [( ± 45)_z] ' laminates is very good.

There are some interesting differences to note between the far-field axial response of the

notched and unnotched laminates. Unlike the response of the unnotched laminates

(Figure 34), the notched r( ± 20)_21, laminate (Figure 39) shows more axial softening re-

sponse than the notched r( ± 10)1z-], laminate. The cause for this difference is likely due to

the stress concentration around the hole which causes non-linear strains at a lower load level.

Unlike the unnotched [ ± 30-1, laminate (Figure 34), the notched r( ± 30)1=], laminate with a

1/2" (Figure 39) hole shows very little axial softening response. In fact, the predicted results

show slightly more softening response than the experimental results. The [( ± 30)1z], lami-

nate's small degree of softening response is not expected and the cause is unknown. On the

other hand, the r( ± 45)1z], laminates with 1/2" holes exhibit significant softening response.

The predicted axial response of the [( _- 45)1=1, laminate correlates extremely well with ex-

perimental results. Due to the degree of softening in this laminate, the excellent correlation

is very encouraging.
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4.6.2 Axial Strain Response Near The Hole

This section focuses on the axial strain at the outer surface of the laminates near the hole

edge. All experiments were conducted with an axial strain gage located as near to the hole

edge as possible. The location of the strain gage is illustrated in Figure 40.

A m A ...... 0* .... *'_L

In order to L.u,J,l_mu m.tu _,u.mu.t fu_u,ts w,ul experimeJit, the i'ar i]eid axial stress is plotted

against the axial strain at 0 = 0 °, Z = 11H/12 (the closest gauss plane to the free surface), and

at various distances from the hole edge in Figure 41 through Figure 44. In order to compare

1/4" hole laminates with 1/2" hole laminates, the distance D from the hole edge is normalized

with respect to the radius A.

The finite element stress-strain results agree satisfactorily with experiment between D/A =

0.17 and D/A = 0.36 for the [( ± 10)12], (Figure 41) and [( =1=20)1z]= (Figure 42) laminates.

The strain calculated at the gauss point nearest the hole (D/A = 0.0048) is much larger than

the experimentally measured value. At D/A = 0.17440, the predicted response (Figure 41 and

Figure 42) correlates reasonably well with experiment; however, at this D/A, the stress-strain

response is softer than the experimental response. The best correlation for both laminates

appears to occur at 0.17 < D/A < 0.36.

The predicted results for the [( =1=20)12] ' laminate (Figure 42) exhibit an interesting

phenomonen in that the most non-linear stress-strain response occurs not at the gauss point

closest to the hole edge, but at the next gauss point away (D/A = 0.02). in fact, the response

at D/A = 0.0352 is also softer than the response at D/A = 0.0048. The [( ± 10)12] ' laminate

does not exhibit this behavior.

The predicted response of the r( =1=30)12]' laminate (Figure 43) correlates very well with ex-

periment at the first three gauss points nearest the hole (D/A = 0.0044, D/A = 0.02, and D/A
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= 0.0356). Of these three gauss points, the results at the third gauss point (D/A = 0.03520)

appear to agree best with experiment. Similar to the predicted response in the r( + 20)lz-L

laminate, the [( ± 30)12], laminate's stress-strain response at D/A = 0.02 is slightly softer

than the response at D/A = 0.0044, but this behavior is not as pronounced in the r( ± 30)1z],

laminate. In fact, the curves from the nearest gauss point from the hole (D/A = 0.0044) to the

furthest gauss point from the hole (D/A -- 0.1108) all tend to be grouped closer than in the

[( ± 20)12], and r( 4- 10)1,] ' laminates.

The response of the [( :1: 45)_z'], laminate (Figure 44) correlates reasonably well with exper-

iment. Note that the predicted responses at all six gauss points (from D/A = 0.0044 to D/A

= 0.1108) are nearly identical. The response at D/A = 0.02 and 0.0356 is softer than at D/A

= 0.0044, but this behavior is nearly indistinguishable.

It appears from the above results that the laminates with larger layup angles q) show the

non-linear region adjacent to the hole to extend further towards the free edge. The reason the

predicted D/A values are larger in the 1/4" hole laminates than in the 1/2" hole laminates may

be due to their smaller radius value A. At approximately the same distance from the hole

edge, the D/A value of the 1/4" hole laminates is twice that of the 1/2" hole laminates.

4.6.3 Stress-Concentration Profile At e = 0 o

This section examines stress concentration profiles along 0 = 0 ° from the hole edge to a dis-

tance D/A = 0.6. Three stress components are examined -- (_9, re=, and (_=. At the hole edge,

due to free surface boundary conditions, these are the only nonzero stresses. Stress profiles

from linear elastic predictions are compared with those from endochronic theory predictions

in Figure 45 through Figure 51. The linear results were obtained from the first load step of

the solution process, while the nonlinear results correspond to the last load step in the loading
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history. All laminate stresses are normalized with respect to the absolute value of laminate's

far field stress I_yJ at the corresponding load step.

4.6.3.1 c e Stress Concentration Profiles

Stress concentration profiles for (_0 at the three gauss planes closest to the mid-plane

(Z=H/12, Z=H/4, Z--5H/12) are shown in Figure 45 through Figure 47 for the four notched

laminates. At all three gauss planes, the E( ± lO)lz-L laminate exhibits the highest oe stress

concentration and the r( ± 45)12-1, laminate the lowest. Linear elastic analysis predicts a de-

crease in the peak G0 stress concentration as the layup angle q_ increases from 10° to 45 °.

The endochronic theory predicts a similar decrease in the peak oe stress concentration as the

layup angle q) increases from 10° to 45 ° at Z=5H/12, but at Z=H/4 and Z=H/12, it predicts the

peak G0 stress concentration to be higher in the r( ± 30)12]0 laminate than in the [_( ± 20)1z],

laminate. In the r( ± 10)12_]=and r( ± 45)12]= laminates, as intuitively expected, linear elastic

analysis predicts higher peak (_0 stress concentrations than the endochronic theory. However,

in the r( ± 20)12], and ]-( ± 30)1z_]' laminates, linear elastic analysis predicts lower peak (_e

stress concentrations than the endochronic theory, which is not intuitively expected. At the

hole edge, the endochronic theory predicts significantly lower oe stress concentrations than

linear elastic analysis at all gauss planes within all of the laminates. Both analyses predict

the peak (_e stress concentration to occur in the [( =1:10)_z] ' laminate at D/A = 0 and

Z=5H/12. At this point, Figure 47 shows the linear elastic and endochronic theory (_8 stress

concentrations to be approximately -4.6 and -4.0, respectively. In contrast, the highest peak

(_e stress concentration in the [( ± 45)12], laminate occurs at D/A = 0.11120 and Z=5H/12 and

has linear elastic and endochronic theory magnitudes of approximately -2.3 and -1.8, respec-

tively. It is especially interesting to note the shape of the G0 profiles. With the exception of the

[( ± 10)12], laminate, at all gauss planes, the maximum stress concentration occurs not at the

hole edge, but at a small distance inward. This phenomenon is especially pronounced in the
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endochronic theory results. Finally, note that at D/A = 0.6, all laminates at all three gauss

planes exhibit approximately the same (_e stress concentration magnitude of -1.5. At larger

D/A values, the (_0 stress concentration approaches the value -1 because Go approaches the

magnitude of _y.

4.6.3.2 ze= Stress Concentration Profiles

The interlaminar _0=shear stress concentration profiles at gauss planes directly below and

above the ply interface (Z=5H/12, Z=7H/12) are shown in Figure 48 and Figure 49. These

figures show the E( :1: 30)12-], laminate to have the highest %= stress concentration and the

r( 4- 10)1z'_, laminate the lowest. In all laminates, linear elastic analysis predicts significantly

higher peak %= stress concentrations than the endochronic theory. This is especially pro-

nounced in the [( + 20)12], laminate. Other than this difference in peak magnitudes, the linear

elastic and endochronic theory profiles are nearly identical. Note that the boundary layer in

which %= exists is very small; %= is essentially zero for D/A > 0.08 for all laminates.

4.6.3.3 (_ Stress Concentration Profiles
Z

The (_= out-of-plane normal stress concentration profiles, at gauss planes directly below and

above the ply interface, are shown in Figure 50 and Figure 51. These figures show that linear

elastic and endochronic theory analysis predict nearly identical profiles at points away from

the hole edge. However, near the hole edge, the profiles differ significantly, especially in the

r( ± 20)12], laminate. For the r( -I- 20)1=1' laminate, the endochronic theory predicts the a=

stress concentration to be nearly 0.6 on the hole edge and at Z=7H/12 (Figure 51), compared

to a linear elastic value of approximately zero. This high magnitude of (_= may be the result

of the zero-slope condition (see "Unloading Considerations" at the beginning of this chapter)

imposed on another out-of-plane stress component. Note the oscillation about _, = 0 pre-
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dictedby bothanalyses.Althoughthe oscillationmagnitudespredictedbythe endochronic

theoryare largerthanthoseof linearelastic analysis near the hole edge, both analyses show

a similar pattern. These oscillations may or may not be real. Often times, displacement

based finite element analysis gives stress oscillations in regions of large strain gradients.

4.6.4 Material Principal Coordinate Stress Profiles Around The Hole

This section examines profiles for all six principal stress components, at the hole edge, for

-90 ° < 0 _; 90°. As in the previous section, the stresses are normalized with the absolute

value of far field stress I_yl. In order to minimize the number of plots, the in-plane stress

component profiles are examined at the mid-plane of the first ply (Z= H/4) and the out-of-plane

stress component profiles are examined at the gauss plane directly below the ply interface

(Z=SH/12). These principal stress profiles can be seen in Figure 52 through Figure 57.

4.6.4.1 Axial Stress c_1

Examination of the al profiles of the four angle-ply laminates (Figure 52) shows the linear and

non-linear profiles to be very similar, except in the _( • 45)1zl ' laminate. The r( -;- 45)I=1,

laminate shows a difference between linear elastic and endochronic results, not so much in

the shape of the curve, but in magnitude. The highest (;1 stress concentration in the

E( ± 45)1=_], laminate is predicted at the same angle for both analyses, but has a value of -5.0

for linear results and a value of over -7.0 for non-linear results, a difference of 40%. The other

laminates show relatively small differences in stress concentration. However, note that in

both the r( • 10)1z_], and F( ± 45)1=1. laminates, the endochronic theory predicts the largest

peak stress concentration while in the r( • 20)lzJ, and E( ± 30)1zl, laminates, linear elastic

analysis gives the largest peak stress concentration. As is intuitively expected for both linear
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elastic and endochronic theory results, the peak value of _1 occurs at approximately -q) (the

layup angle of each laminate).

4.6.4.2 Transverse Stress a_

Examination of the (_z profiles of the four laminates (Figure 53) shows the linear elastic and

endochronic theory profiles to be very similar in the ['( ± 10)12_], and r( ± 20)1=_], laminates

and relatively dissimilar in the 1-( ± 30)1=-I, and r( J,- 45)1=_], laminates. Note that the dissimi-

larities tend to occur in a very narrow range of _) angles. Also, the dissimilarities tend to be

the most pronounced at the largest values of (_=. The jaggedness in the linear elastic profiles

is probably due to local stress oscillations at the gauss points which, as mentioned earlier,

are common to displacement based finite element analysis in regions of high strain gradients.

The jaggedness in the endochronic theory profiles is likely due to a combination of the afore-

mentioned oscillations and to the zero-slope condition forced upon stress components if they

start to unload in the analysis. Specifying the value of a specific stress component disrupts

equilibrium and causes the other components to shift to re-establish equilibrium. The

endochronic theory (_z stress concentration is generally lower than the linear elastic magni-

tude in all of the laminates except for the I-( ± 30)_z], laminate. The r( ± 30)_-I, laminate's

profiles are very similar except in a region from 0_ -30 ° to 0_20 °. In this region, the

endochronic theory stress concentration increases abruptly, likely caused by the aforemen-

tioned zero-slope imposition on a certain stress component and the need to re-establish

equilibrium.

4.6.4.3 Interlaminar Normal Stress _3

The linear elastic and endochronic theory stress profiles for the (_3 interlaminar stress

(Figure 54) are very dissimilar for all the laminates except the [( ± 10)_z], laminate. In this
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laminate,theendochronictheory stress magnitudes are slightly higher than the linear elastic

magnitudes. Note the r( ± 10)121, laminate's nearly anti-symmetric profile about 0 = 0 °. The

r( ± 20)1z-I, laminate's linear elastic and endochronic theory profiles agree reasonably well

from 0= -90 ° to 0_ -20 ° and from 0_25 ° to 0= 900 . However, between 0 -_ -20 ° and

0_25 °, the curves show a significant difference. This difference is mainly caused by a large

jump in magnitude at 0_ -5 ° . Again, this jump is likely caused by the need to re-establish

equilibrium due to a zero-slope imposition on another out-of-plane component. The

[( ± 30)1='1' and [( ± 45)12], laminates" endochronic theory predicted (_3stress profiles exhibit

radical jumps and show stress magnitudes much higher than the linear elastic profiles. Note

that in all the laminates, except for the jumps in the endochronic theory profiles, the (_3 stress

concentration is relatively low, the absolute value not exceeding approximately 0.1.

4.6.4.4 Interlaminar Shear Stress (;,

The linear elastic and endochronic theory stress concentration profiles for the (_4 (¢z3)

interlaminar shear stress (Figure 55) are similar in all of the laminates except for the

r( ± 20)_2-1olaminate where the profiles show a significant difference in magnitude. In this

laminate, the largest endochronic theory stress concentration is nearly 6 times greater than

the largest linear stress concentration. The r( ± 10)12j, laminate shows the endochronic

theory positive stress magnitude to be larger and the negative magnitude to be smaller than

the linear elastic stress magnitude. The r( ± 30)_zJ, laminate's endochronic theory peak

stress magnitude is larger than the linear elastic peak magnitude. In contrast, the

r( ± 45)1=], laminate's endochronic theory predicted stress profile exhibits smaller magni-

tudes than linear elastic analysis. The largest predicted stress concentration occurs in the

r( ± 45)_z-]= laminate at approximately -20°. Linear elastic analysis predicts a value of nearly

-0.7 while endochronic theory analysis predicts a value near -0.5. The r( ± 30)_=-I, laminate

exhibits magnitudes nearly as high. These large magnitudes of _4 stress concentration show
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the potential for delamination. The magnitudes in the [( 4- 20)12"1,and [( ± 30)1=]. laminates

are not nearly as high.

4.6.4.5 Interlaminar Shear Stress a6

The linear elastic and endochronic theory _5 (¢Is) stress concentration profiles (Figure 56)

agree reasonably well for all the laminates except the r( =E 20)1=-I, laminate (similar to the _,

profiles). This laminate shows odd behavior in that the endochronic theory stress concen-

tration is opposite in sign to the linear elastic stress concentration, except in the region from

0_ -25 ° to 0_25 °. In this region, the profiles are of the same sign, but the endochronic

theory stress magnitude is much larger than the linear elastic magnitude. In the r( =1=10)1z1,,

[( =1:30)1z],, and [( + 45)1z] , laminates, the endochronic theory stress magnitudes are gener-

ally lower than the linear elastic magnitudes. Again, the largest discrepancies occur near the

stress concentration peaks.

4.6.4.6 Inplane Shear Stress _6

The (_6 (_.) linear elastic and endochronic theory stress concentration profiles (Figure 57) are

similar for all the laminates. In general, they show the endochronic theory stress magnitudes

to be smaller than the linear elastic magnitudes. Differences are most pronounced at the

profile peaks. Not only are the linear elastic and endochronic theory stress profiles similar,

but the profiles for all laminates are very similar in shape, especially in the [( =1=10)1=-I, ,

E( =1:20)_z-I. , and r( • 30)1z_], laminates.
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4.6.5 Cylindrical Coordinate Stress Profiles Around The Hole

This section examines cylindrical coordinate stress profiles at the hole edge from

-90 ° < 0 < 90°. The in-plane normal stress, a0, is plotted at the mid-plane of the first ply

(Z=H/4) in Figure 58, and the interlaminar shear stress, _e=, is plotted at the gauss plane be-

low the ply interface (Z=5H/12) in Figure 59.

4.6.5.1 Circumferential Stress %

Examination of the oe stress profiles (Figure 58) around the hole shows the linear elastic and

endochronic theory profiles to be very similar except in the E( 4- 45)12J, laminate. The

E( 4- 45)1=1' laminate shows the endochronic theory stress magnitude to be significantly higher

from 0-_30 ° to 0_50 °, while from 0_ -25 ° to 0_30 °, the linear elastic stress magnitude is

higher. The r( 4- 10)12], laminate also shows the endochronic theory peak stress magnitude

to be higher than the linear peak magnitude by a small amount. However, at all other values

of 0, the endochronic theory stress magnitude is lower than that predicted by linear theory.

In both the r( 4- 20)1=], and r( 4- 30)1z], laminates, the endochronic theory stress magnitude

is lower than the linear elastic magnitude for all values of 0. Note how similar the (_e stress

profiles are to the a_ profiles in the previous section. This most likely occurs because G_ is the

largest stress component magnitude in all of the laminates and is the dominant term in the

transformation from principal coordinates to cylindrical coordinates.

4.6.5.2 Interlaminar Shear Stress re,

The %= stress profiles (Figure 59) show the maximum value of %= to occur at 0=0 ° for all of

the laminates. In fact, all of the linear elastic stress profiles have very similar shapes. As 9
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(the layup angle of the laminates) increases, the e bandwidth of high %= stresses around the

hole widens. In fact, the [( ± 45)121, laminate shows a nearly constant peak value of %= from

02 -25°to 0_25 °. On the other hand, the peak value of %= occurs in a very limited region

around 0 = 0° in the [( ± 10)1=], laminate. The endochronic theory stress magnitudes are

smaller than the linear elastic magnitudes for nearly all values of @ in all of the laminates.

Only in the [( -4- 10)1z]. laminate is the endochronic theory stress magnitude larger than the

linear elastic magnitude from 0 -_ 15° to 0245 °. The reduction in the peak stress concentration

due to endochronic theory analysis is as great as 30% in the [( • 45)12] ' laminate.

4.7 Summary

The overall stress-strain correlation between endochronic theory finite element analysis and

experiment is very good. The endochronic theory was shown to predict axial and transverse

response more accurately than linear elastic analysis in all of the laminates, especially for the

[ ± 45], and [( ± 45)1z], laminates. However, the predicted transverse response was not as

good as the predicted axial response in the [ ± 10]o, [ ± 20], , and [ • 30], unnotched

laminates (where _1 and c 2 are of opposite sign). A possible cause for the less accurate

correlation in these laminates is that the endochronic parameters are unable to accurately

model mixed stress states.

In spite of the generally good correlation, the endochronic theory finite element analysis is

limited by numerical problems. The endochronic constitutive equations predict unloading of

certain stress components in the angle-ply laminates at some point during their load history.

This, coupled with the constant stress and constant strain algorithms which will not converge

near unloading points, limits the utility of the finite element program AMNISAP. The unloading
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problemis circumventedsomewhatbythe zero-slopecondition. However,this is only a

_patch-up _ solution and results generated after unloading occurs are questionable.

The comparison between stresses from linear elastic and endochronic theory analyses

reveals some interesting results. In general, the stress concentrations from endochronic

theory analysis are smaller than those from linear elastic analysis. However, at various lo-

cations, the endochronic theory predicts stress magnitudes greater than linear elastic analy-

sis. The endochronic theory stress profiles are generally more jagged than the linear elastic

profiles, sometimes jumping to extreme magnitudes. An explanation for this unexpected

phenomonen is that another stress component at the same location unloaded and the zero-

slope condition was imposed. To re-establish equilibrium, the observed stress component

shifted to a higher than expected value.
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5.0 Failure

5.1 Introduction

In a previous analysis of compression loaded angle-ply laminates with central holes, Burns

et al I found ultimate failure load predictions to be very conservative in comparison to exper-

imental results. However, Burns et al prediction's of the mode and location of failure were

quite good. In the present study, the main reason for using a nonlinear constitutive relation-

ship was to asses the effect of nonlinear material response on the prediction of the failure

load. It was reasoned that linear elastic analysis predicts stresses around the hole to be much

higher than they are in real laminates. Inclusion of nonlinear material response in the anal-

ysis should result in more accurate (and lower) stress levels in the region of stress concen-

tration around the hole.

Another possible explanation for the conservative predictions of failure using the finite ele-

ment model is that the idealized model predicts a stress state near the hole which is much

higher than the true stress state. This is because the finite element model treats the ply

interface as being discrete -- the material properties change discontinuously across the
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interface. Of course, this mathematical discontinuity is not present in actual laminates;

therefore, the stresses predicted by the model may be significantly higher than those in real

laminates +9

This chapter presents a failure analysis of both unnotched and notched laminates based upon

a nonlinear stress analysis and the tensor polynomial failure criterion. The stress results

generated by AMNISAP were used in a post-processing program which employs the tensor

polynomial failure criterion to predict the far field load, location (for laminates with holes), and

mode of failure. The tensor polynomial was chosen as the failure criterion because it ac-

counts for stress interaction, which may be especially important in the complex, three-

dimensional stress field around the hole. Results of the failure analysis based upon linear

and nonlinear material response are compared to experimental results.

Application of the tensor polynomial (a point-wise failure criterion) at points around the hole

edge gives a prediction of the initial (first) failure event in the laminate. Often, this does not

correspond to the ultimate load carrying capacity in real laminates. Damage, in the form of

micro-cracks, usually forms in the highly stressed region of the hole edge prior to final frac-

ture. One approach for the application of a point-wise failure criterion to notched laminates

is to base failure on the stress state at a small distance do from the edge of the hole. The

distance do from the hole edge has been called a characteristic distance +8 , meaning that for

a given material it does not change with the layup of the material. This chapter examines the

tensor polynomial failure predictions at various radii around the hole to assess the correlation

of theory and experiment.

The final objective of this chapter is to examine the effect of the w/d (width over hole diameter)

ratio on failure. Results from linear elastic analysis are compared with those from inelastic

analysis.
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5.2 The Tensor Polynomial

The stress tensor polynomial can be written

Fi_ i + FljO'ioj < 1 (i = 1,2 ...... 6)

where the stress components in material principal coordinates (_=) have been expressed in

reduced notation. The F, and F=jare second order and fourth order strength tensors, respec-

tively, determined from tests on unidirectional laminae. Determining the normal stress inter-

action constants Flz, F_3, and Fz3 requires difficult to perform biaxial tests. Fortunately, these

constants have been previously shown to have little influence on the failure predictions. In

this study, FI=, F13,and F23 are set to zero. The required components of the strength tensors

are determined as follows:

Fi _ 1 + 1 (i = 1,2,3)
_uc o:jt

Fii _ -1 (i = 1,2,3, no sum)
(o.UC)((;ut)

Fii _ 1 (i = 4,5,6, no sum)
(oUlt) 2

Fi = 0 (i = 4,5,6)

Fij = 0 (i _=j)
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5.2.1 Strength Parameters for AS413502 Graphite-Epoxy

The AS4/3502 strength data used for failure prediction (Table 9) are the same as those used

in Burns et al 1. The constants o_: and o_ (i=1,2,3) represent the principal material direction

normal strengths in compression and tension, respectively. The constants (_,_t (i=4,5,6) rep-

resent the principal material direction shear strengths. Since the time of Burns' work, im-

proved test methods have shown the o_'t and o_ 't shear strengths to be considerably higher

than those used by Burns et al. The 1-2 plane [0] Iosipescu test used to determine

endochronic constants in Chapter 2 (Figure 7) failed at a shear stress of 13.5 ksi; however,

failure did not initiate in the shear region and the failure mode was transverse tension, not

pure shear. Therefore, the true shear strength of AS4/3502 is believed to be higher than 13.5

ksi. Walrath and Adams ,7 observed shear strengths of 15.5 ksi for AS4/3501-6 (a material very

similar to AS4/3502) using the Iosipescu shear tests. Considering the above, the 1-2 and 1-3

plane shear strength (_t and o_t, respectively) used in this study is 14 ksi. Both Burns et al

value of 9.4 ksi and this new value of 14 ksi are considered in the failure analysis of notched

and unnotched laminates and comparisons are made.

5.3 Unnotched Laminates

Failure analysis of the unnotched laminates presented few difficulties. Because the two-

dimensional stress state (edge effects were not considered) is constant throughout the in-

plane and thickness dimensions, ultimate fracture was assumed to occur when failure was

first predicted by the tensor polynomial. Comparisons of failure based upon linear elastic

stress analysis and nonlinear stress analysis are shown in Table 10 where the axial failure

stress and failure strain are given as a__tand E_'t, respectively.
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Table9. LaminaStrengthsforAS413502GraphiteEpoxy

StrengthProperty (ksi)

o_ 200.0

o_c -122.0

or 7.0

o_ -35.0

o_t 7.0

o_¢ -35.0

o_ 't 8.0

o_" 9.4

o_ tt 9.4
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As can be seen in Table 10, both linear theory and endochronic theory failure predictions for

the unnotched angle-ply laminates were quite good. Since the tensor polynomial is based on

stress, the endochronic theory and linear theory predictions of failure stress are nearly iden-

tical. However, the failure strains predicted by the two theories differ considerably - the

endochronic theory failure strains correlate with experiment significantly better than the linear

theory failure strains.

As shown in Table 10, a shear strength of 9.4 ksi gives conservative failure predictions (both

o_ ft and 6__t)for all of the laminates, except the 1"4- 20_], laminate. A shear strength of 14 ksi

also gives conservative failure predictions except for the r ± 20], laminate and (_" of the

r ± 45]= laminate; however, the failure predictions are considerably more accurate (except

for the I" ± 20], laminate). Using the 14 ksi shear strength, the predicted o__t stresses and

e_,_tstrains are within 6% of experimental values for the I- ± 101, and E ± 301, laminates. The

endochronic theory predicted _" and ¢_" are within 12% and 40% of experiment, respectively,

for the r ± 45], laminate. The E_,"strain is a significant improvement over that predicted using

9.4 ksi as the shear strength. The tested r ± 45], laminate did not fail at the stress and strain

levels given in Table 10 -- the amount of axial deformation required to cause final fracture of

this specimen was larger than the travel permitted by the loading frame. The _r_" and E__tval-

ues presented are the maximum values attained during the test.

The reason for the I- ± 20"1, laminate's poor correlation between theory and experiment is not

understood. It is possible that the test specimens contained flaws which caused them to fail

early. However, this is unlikely because both specimens failed at nearly identical loads. An-

other possibility is that the I" ± 20]= laminate failed due to interlaminar stresses which were

not modeled in the stress analysis. If this is true, the [_± 20], laminate's failure mode is ex-

clusive from the failure modes of the other angle-ply laminates since failure predictions are

satisfactory for them.
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Table10. ComparisonofFailurePredictionswithExperimentforUnnotchedLaminates

Laminate [± 10], [ ± 20], [ ± 30], [ ± 45],

= 9.4 ksi

Linear

Theory

Endochronic

Theory

o-_,t= c_'t
= 14 ksi

Linear

Theory

Endochronic

Theory

Experiment'

Range

_;,, _;,,
(ksi) (%)

-92.658 -0.5153

-92.880 -0.5461

-95.504 -0.5310

-95.031 -0.5598

-96.985 -0.5683

10.630 0.0668

(ksi) (%)

(ksi) (%)

-48.503 -0.3679

-48.716 -0.3784

-54.183 -0.4109

-53.626 -0.4184

-42.490 -0.3306

2.540 0.0232

(ksi) (%)

(ksi) (%)

-27.538 -0.3725

-27.363 -0.3808

-34.594 -0.4680

-33.362 -0.4759

-34.340 -0.5028

1 test 1 test

quit _lt

(k;i) (%)

-19.058 -0.6531

-19.127 -0.7856

-30.272 -1.0374

-30.205 -1.9361

-26.760 -1.5910

1 test 1 test

" Note:

Experimental values are averaged.

Range indicates the largest difference between experimental values.
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5.4 Notched Laminates

Predicting the final fracture load of laminates containing notches is difficult because regions

near the notch generally fail before the laminate as a whole fails. This local failure may or

may not be observable. Micro-cracking is usually difficult to observe whereas shear crippling,

fiber breakage and delamination are much easier to detect. The angle-ply laminates in this

study displayed no signs of observable (x-ray) damage prior to ultimate failure (with the ex-

ception of the ['( ::t=45)121, laminate with a 1/2" hole). Another difficulty in predicting final

fracture is obtaining an accurate stress state around the hole. As mentioned earlier, the finite

element mesh models ply interfaces as being discrete. Therefore, the finite element analysis

may give stresses that are too high.

Despite these difficulties, predicting the fracture load is only part of understanding the failure

process of the notched angle-ply laminates. Predicting the mode of failure and the location

at which failure initiates are important as well. Discussions of fracture, the mode, and the

location of failure initiation are presented in the following two sections.

5.4.1 Fracture

Theory and experiment are compared for laminates with w/d ratios of 10 in Table 11, where

o_ft and _t represent the far-field axial stress and strain at the fracture load. The fracture load

is equivalent to the load at which the tensor polynomial predicts failure at the hole edge. As

mentioned previously, because local failure at the hole edge does not necessarily correspond

to fracture and because the finite element stresses may be too high, the theoretical a_" and

_;_t values in Table 11 are very conservative. A shear strength of 14 ksi gives slightly less

conservative failure predictions than the 9.4 ksi shear strength; however, the improvement is
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notas pronounced as with the unnotched laminates. The higher value of shear strength im-

proves the r( ± 45)1zl, laminates (_,t stress most, bringing it to within approximately 50% of

the experimental (;_t stress.

Similar to the analysis of unnotched laminates, the linear theory and endochronic theory (_tt

stresses in Table 11 are nearly identical for all of the laminates. As mentioned previously,

because the tensor polynomial is a stress based failure criterion and because the stresses

are relatively proportional, this is expected. However, unlike the unnotched laminate analysis,

the linear theory and endochronic theory _t strains are also nearly identical. The reason the

E__tstrains are so similar is that at the low predicted values of (_", the laminates have not been

loaded significantly into their softening regions. If the theoretical o_,_tstresses were close to

the experimental vy_"_tstresses, the linear theory and endochronic theory E_,"strains would differ

significantly, the endochronic strains being the more accurate.

From Table 11, it appears that the problems of applying the tensor polynomial at the hole

edge and finite element stresses that are possibly too high have caused the theoretical (_"

failure stresses to be very conservative. Because of the low (_t stresses, the endochronic

theory was not able to show an advantage over linear elastic analysis in predicting failure

stresses c_ _t and failure strains _t. The results from Chapter 4 clearly show that with more

accurate values of _u,t stresses, the endochronic theory would give more accurate predictions
--y

of E;" strains than linear theory.

5.4.2 Failure Mode and Location

The failure mode and location as predicted by linear and endochronic stress analyses agree

quite well with experiment. Table 12 and Table 13 list the predicted location, fracture stress

(_"" and strain _"" and the tensor polynomial terms at failure for the four angle-ply laminatesy vy ,

Failure 166



I

Table 11. Notched Laminate Comparison of Failure Predictions with Experiment

Laminate

= 9.4 ksi

Linear

;Theory.

:Endochronic

iTheory

= 14 ksi

Linear

Theory

Endochronic

Theory

Experiment*

Range

[( :1210),2],

(ksi) (%)

-10.696 -0.0596

-10.640 -0.0592

-14.603 -0.0812

-14.929 -0.0833

-76.255 -0.4054

1.350 0.0161

(ksi) (%)

[(+ 20),=],
o-ult _,.ult

(k;i) -Y(%)

-7.956 -0.0605

-7.969 -0.0606

-11.072 -0.0841

-11.223 -0.0855

-45.010 -0.3550

0.420 0.OO57

(ksi) (%)

[( • 30),2] "

(ksi) (%)

-7.208 -0.0973

-7.222 -0.0975

-9.570 -0.1292

-9.732 -0.1315

-26.323 -0.3521

1.510 0.0289

(ksi) (%)

_ult _ult
y vy

(ksi) (%)

-7.952 -0.2722

-7.871 -0.2688

-11.437 -0.3906

-12.195 -0.4239

-25.227 -1.4387

4.28 0.3774

(ksi) (%)

* Note:

Experimental values are averaged.

Range indicates the largest difference between experimental values.
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usingthe two materialmodels. Figure60 throughFigure63showthe tensorpolynomial

profilearoundtheholeedgefor both linear and endochronic stress analyses. Note that the

endochronic theory gives a profile nearly identical to the linear elastic profile. In the sections

that follow, theory and experiment are compared.

5.4.2.1 10 ° Angle-Ply Laminate With A 114" Hole

The [( :t: 10)1=], laminate failed in two modes, one a compressive failure across the horizontal

axis of symmetry, and the other a fracture at 10 o from the loading axis 1. Both of these failures

initiated at 0 = 0°. As shown in Table 12, both linear and endochronic theory analysis predict

failure to occur at the first gauss plane above the ply interface (Z=7H/12) and at an angle of

0.0 o from the x-axis. The largest term in the tensor polynomial is the out-of-plane shear term

F.T12_,which has a value of 0,51 for both types of analysis. This term, along with the relatively

high in-plane shear term of F.¢I_ = 0.21 likely represents the shear crippling type failure ob-

served in the test specimen. The compressive failure mode is harder to explain. The FI_ 1 and

Fl1_1t terms are relatively small; however, the value of their sum is significant, being approxi-

mately 0.26. Both terms represent compressive failure, so their sum is the important value.

Although this value is not as large as the F55-_3term, it is the next largest value and thus re-

presents compressive failure as a second possible failure mode. Note that the linear elastic

and endochronic theory tensor polynomial terms are nearly identical. Apparently, the stress

states predicted at failure are very similar for both analyses. Using a shear strength of 14 ksi,

Table 12 shows the endochronic prediction for failure location to be the same as the elastic

prediction; however, the tensor polynomial terms are different from those using using a shear

strength of 9.4 ksi. The compressive failure mode terms (Flo- 1 and Fl1_) are higher, while the

shear mode terms (F55T_3and F.T_z2) are lower. In fact, the sum of FlCl and Flla1= is approxi-

mately equal to Fss_13,both values being roughly 0.40. This is consistent with both failure
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Table12. TensorPolynomialTermsforLaminateswith1/4"Holes

[(± lO),]. [( ± 2o),2].

:'-,_J'_u"= o._,t Linear Endochronic Linear Endochronic

= 9.4 ksi Theory Theory Theory Theory

Z 7H/12 7H/12 7H/12 7H/12

0 0.0 o 0.0 o -2.5 o -2.5 o

rrultlnei_ .113 RQR .4 rI,R.4_l -7,Q_R .TQRQ

6_'t(%) -.0596 -.0592 -.0605 -.0606

Flo 1 0.1583 0,1579 0.0801 0.0799

F.ol z 0.1000 0.0257 0.0256

F2o2

F2202

F3(_ 3

F330"3z

F=_223

FssT23

FseT_2

= 14 ksi

c_"(psi)
_ult/O/ !

y _ /o)

0.1005

0.0008

F3o3

0.0000

-0.0096

0.0000

0.0195

0.5174

0.2130

Linear

Theory

7H/12

0.0 o

0.0006

0.0000

-0.0098

0.0000

0.0197

0.5187

0.2111

Endochronic

Theory

7H/12

0.0 o

0.0362

0.0004

0.0178

0.0001

0.0822

0.5582

0.1993

Linear

Theory

7H/12

-2.5 o

-14,603 -14,929 - 11,072

-.0812 -.0833 -.0841

0.2173 0.2186 0.1113

Fllc z 0.1893 0.1917 0.0497

Fzo2 0.0012 0.0015 0.0503

Fzzo_ 0.0000 0.0000 0.0008

-0.0131 -0.0129 0.0247

0.0001 0.0001F33o| 0.0002

F=t_3 0.0368 0.0380 0.1587

Fss¢l=3 0.4027 0.3993 0.4453

F.¢l=z 0.1658 0.1604 0.1590

0.0358

0.0004

0.0173

0.0001

0.0819

0.5525

0.1965

Endochronic

Theory

7H/12

-2.5 o

-11,223

-.0855

0.1119

0.0502

0.0532

0.0009

0.0279

0.0002

0.1614

0,4384

0.1529
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Table13. TensorPolynomialTermsforLaminateswith112"Holes

= 9.4ksi

Z

0

o_"(psi)

_"(%)

F_o_

Fzo2

F2zo_

F3o3

F33o_

F44"_223

Linear

Theory

7H/12

-5.0 o

[(:E 30),2]'

Endochronic

Theory

7H/12

Linear

Theory

5H/12

-5.0 o -17.5 o

-7,208 -7,222 -7,952

-.0973 -.0975 -.2722

0.0634 0.0631 0.0743

0.0161 0.0160 0.0221

0.0552 0.0557 -0.2451

0.0010 0.0010 0.0188

0.0515 0.0516 0.0534

0.0008 0.0008 0.0009

0.1494 0.1487 0.0906

[( 4- 45)12]'

Endochronic

Theory

5H/12

-17.5 °

-7,871

-.2688

0.0741

0.0220

-0.2414

0.0182

0.0570

0.0010

0.0898

F55"tlz3 0.4154 0.4114 0.2648 0.2670

F,'t_z 0.2472 0.2429 0.7202 0.7135

o_ 't= o_'t Linear Endochronic Linear Endochronic
= 14 ksi Theory Theory Theory Theory

Z 7H/12 5H/12 7H/12

o_"(psi)

-5.0 o

-9,570

-.1292

0.0840

0.0283

0.0731

0.0017

0.0683

0.0015

0.2623

0.3015

0.1794

_,"(%)

F1G1

FI_o_ z

F2_z

-2.5 o

-9,732

-.1315

0.0663

0.0176

0.0516

0.0008

0.0608

0.0012

0.3954

0.2470

0.1637

F22(_ 2

F30 3

F330I

7H/12

2.5 °

-11,437

-.3906

0.0505

0.0102

-0.5591

0.0977

0.0779

0.0019

0.6390

0.1295

0.5524

F,,4"_z3

FssTz3

F66"_122

15.0 o

-12,195

-.4239

0.0265

0.0028

-0.6354

0.1262

0.0785

0.0019

0.9066

0.0551

0.4297
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modes being present in the test specimen. This result also lends support for using the higher

value of shear strength.

Figure 60 shows that not only are the linear elastic and endochronic theory stress states

nearly identical at the point of failure, but around the profile of the hole as well. The

endochronic theory results, represented by a dashed line, are nearly indistinguishable from

the linear elastic results. The shape of the tensor polynomial profile is very interesting. The

majority of the profile lies under the value of 0.5. At 0 = 0°, there is a very sharp peak where

the tensor polynomial reaches 1.0. Note also that the profile is nearly symmetric about

0 = 0 °. This is because of the relatively small fiber angle of 10 o. As the other figures show,

the near symmetry about 0 = 0° is less pronounced for larger fiber angles.

5.4.2.2 20 o Angle-Ply Laminate With A 114_ Hole

The [( :1: 20)1=] , laminate failed due to a fracture at 20 o from the loading axis I Like the

['( 4- 10)1=J, laminate, this fracture was parallel to the fiber direction in half of the plies and

fractured fibers in the alternate plies. Failure initiated at 0 -- 0 °. Table 12 shows that both

linear elastic and endochronic theory analysis predict failure to initiate in the first gauss plane

above the ply interface (Z=7H/12) and at 0 = -2.5 ° . The dominant tensor polynomial term

is again the out-of-plane shear term FssT_z_with a value of approximately 0.55. The next largest

term is the in-plane shear component F._z with a value of approximately 0.20. Together,

these two terms have a sum of 0.75, which represents a shear failure as being the dominant

failure mode. Using a shear strength of 14 ksi, Table 12 shows a slight redistribution in the

values of the tensor polynomial terms that lessens the dominant effect of the F._3 and F6e_z

terms and increases the values of the FI_, F11_, and F._z=3terms. However, the F._3 term is

still the largest term at a value of approximately 0.44. As with the [( • 10)12J, laminate anal-

ysis, the tensor polynomial terms are nearly identical for both linear and endochronic theory

analysis.
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Figure 61 shows the tensor polynomial profile around the hole of the l-( :1: 20)1=], laminate to

be nearly identical to the profile of the [( ± 10)1='L laminate. The peak value occurs at

0 = -2.5 ° and the peak is not quite as sharp as in the [( ± 10)1=], laminate. Also, the near

symmetry noted in Figure 60 is somewhat more skewed in Figure 61.

5.4.2.3 30 o Angle-Ply Laminate With A 112" Hole

The [( ± 30)12], laminate failed due to a fracture at 30 o from the loading axis 1. As in the

[( ± 10)12], and [( ± 20)1_]= laminates, this fracture was parallel to the fiber direction in half

of the plies and fractured fibers in the alternate plies. Failure appears to have initiated at

0_0 °, although the failure band was fairly wide, thus it is difficult to pinpoint the exact location

at which failure begins (see Figure 2.25 in Burns et al 1). Using a shear strength of 9.4 ksi,

Table 12 shows that both linear theory and endochronic theory analyses predict failure to in-

itiate in the gauss plane above the ply interface and at 0 = -5.0 °. This location is reasonably

close to that observed in the test specimen. Like the [( ± 20)1z], laminate, the dominant

tensor polynomial term is Fss_3 with a value of 0.41. The second and third largest terms are

Fss%z2and F=%23,respectively. The sum of these shear terms is greater than 0.8, which shows

that shear failure should be dominant. Note that all of the tensor polynomial terms agree quite

well between linear elastic and endochronic theory analysis. Using a shear strength of 14

ksi, Table 13 shows a difference in the location of failure for the two types of analysis. Linear

analysis predicts failure to occur at the same point (Z=7H/12, 0=-5.0 o), whereas the

endochronic theory predicts failure to occur at the gauss plane directly below the ply interface

(Z=5H/12) at an angle of 0 = -2.5 °. The endochronic theory predicts the failure location

more accurately than linear elastic analysis when the shear strength is set to 14 ksi. Note that

the tensor polynomial terms differ fairly significantly between the two analyses and have

shifted from the values using a shear strength of 9.4 ksi. Linear analysis still shows the

Fss_Zzterm to be dominant, but to a lessor degree. However, the endochronic theory shows
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the F._zz3term to be dominant. In both analyses, the sum of the tensor polynomial shear terms

using shear strengths of 14 ksi and 9.4 ksi are nearly the same; however, the individual terms

are redistributed.

Figure 62 shows the tensor polynomial profile around the hole to be very similar to the pro-

files of the [( ± 10)1z-I, and [( ± 20)1z_], laminates shown in Figure 60 and Figure 61, respec-

tively. The peak has a much smoother profile and the bandwidth of points above 0.5 has

increased. The near symmetry shape is still present, but more skewed.

5.4.2.4 45 o Angle-Ply Laminate With A 112" Hole

Like the !- ± 45-1, unnotched laminate, the E( ± 45)1z-], laminates with 1/2" holes were not

tested to failure due to the limited travel of the testing machine. However, these laminates

did show damage in the form of bands of matrix damage, visible under ultrasonic C-scan,

which formed at ± 45 ° to the loading axis 1. It is nearly impossible to observe the precise

location of failure initiation from the C-scan, although the damage bands seem to initiate at

02 ± 15° . Using a shear strength of 9.4 ksi, Table 13 shows both linear elastic and

endochronic theory analysis to predict the failure location at the gauss plane directly below

the ply interface (Z=5H/12) and at 0 = 17.5°, which agrees reasonably with experiment. The

out-of-plane shear terms (F=¢|3 and F55¢_) are much less dominant in this laminate. Instead,

the in-plane shear term Fs6t_zdominants with a value of approximately 0.72. Part of the reason

this value is so high is that the F=o=term is negative, which allows the other terms to be larger.

Shear failure is the obvious failure mechanism predicted by both analyses. Again, the tensor

polynomial terms are nearly identical for both analyses. Using a shear strength of 14 ksi,

Table 13 shows a large discrepancy in the predicted location of failure between linear elastic

and endochronic theory analysis. Both analyses predict failure to occur in the gauss plane

directly above the ply interface (Z=7H/12). However, linear analysis predicts the angle of

failure initiation to be 2.5° whereas endochronic theory analysis predicts 0 = 15.0 °. The
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endochronicanalysispredictsthecorrectlocationmoreaccuratelythan linearelasticanaly-

sis. Also,thetensorpolynomialtermsdiffersignificantlybetweenthetwoanalyses.In both

analyses,the dominantterm hasshiftedfrom Fss_z to F,¢zz_. However, this shift is most pro-

nounced for the endochronic theory. Note also that the Fz(_2term using a shear strength of

14 ksi is almost three times larger than the Fzoz term using a shear strength of 9.4 ksi.

The shape of the [( + 45)12], laminate's tensor polynomial profile is, again, very similar to the

previously discussed laminates, as can be seen in Figure 63. The profile is anti-symmetric

to the previous laminate's profiles because failure is predicted at Z=SH/12 instead of

Z=7H/12. The bandwidth of points with magnitudes above 0.5 has increased, and the near

symmetrical shape is much more skewed. As with the previously discussed laminates, the

endochronic theory profile is nearly indistinguishable from the linear elastic profile.

5.4.3 Failure Away From The Hole Edge

Whitney and Nuismer _ applied the characteristic distance theory by evaluating a given failure

criterion at a set distance do from the hole edge along the horizontal centerline of the speci-

men (0 = 0° here). Burns 1 also used this approach in his work and found the distance do to

be dependent on both hole diameter and laminate ply orientation. In other words, the distance

dowas not found to be "characteristic".

Instead of examining the state of stress at various distances from the hole along 0 = 0 °, this

study applies the tensor polynomial at various radii (or distances from the hole edge) for

-90 ° < 0 _ 90° . Figure 64 and Figure 65 show the fracture stress _t as a function of

distance from the hole edge for the four notched laminates with a w/d ratio of 10. Figure 64

shows the profiles from linear elastic analysis and Figure 65 shows the endochronic theory
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profiles. Table 14 lists the failure locations for the same four laminates as a function of dis-

tance from the hole edge.

Figure 64and Figure 65 show the failure profiles from linear elastic analysis and endochronic

theory analysis to be nearly the same. Note that the r( ± 30)_2], and I-( J'- 45)12-1=laminates

both have a local maximum at D/A = 0.0045. In other words, the predicted failure stress is

lower at D/A = 0.02 than at 0.0045. In fact, for the I_( ± 45)!z-Is laminate, this local maximum

is the absolute maximum for the data shown. The r( ± 45)1z-I, laminate's profile appears to

have nearly a 0 o slope after the point D/A = 0.02. These figures show that very large D/A

values are required to predict the experimentally measured strengths.

As D/A increases, the location of failure also changes as shown in Table 14. Both linear

elastic and endochronic theory analysis predict the same failure location in all of the lami-

nates except for the r( ± 45)1z]= laminate. However, the discrepancy in this case is small and

only occurs at D/A = 0.02 and D/A = 0.0355. Note that the through-the-thickness Z location

varies widely, especially for the E( ± 10)1z], and r( ± 20)_z_], laminates. The 0 locations tend

to vary less than the Z locations with the exception of the [( 4- 10)1z], laminate, where it jumps

to nearly 90 ° at D/A = 0.08. In examining this table, keep in mind that the through-the-

thickness location Z and the angle 0 are not entirely separate. A point located at a given 0

and Z = 7H/12 has nearly the same stress state as a point located at -0 and Z = 5H/12.

For example, in the [( -F 30)12], laminate, failure is predicted to occur at D/A = 0.0045, Z =

7H/12 and 0 = -3.75 ° . At D/A = 0.02, failure is predicted at Z = 5H/12 and 0 = 3.75 ° . Al-

though these points are different, the failure mechanism and mode are likely the same.
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Tab;e 14. Location of Failure at Various Distances from the Hole Edge

D/A

0.00000

0.00450

0.020000

0.03550

0.04900

0.08000

0.11100

D/A

0.00000

0.00450

0.020000

0.03550

0.04900

Linear

Theory

Z 0

7H/12 0.0

5H/12 -0.85

H/12 -3.75

H/12 -8.35

7H/12 -18.75

H/12 89.15

H/12 89.15

Endochronic

Theory

[( ± 10)t,] ,

Z

7H/12

7H/12

5H/12

5H/12

5H/12

5H/12

11H/12

[(4- 20)1,]"

Linear

Theory

Z e

7H/12 0.0

5H/12 -0.85

H/12 -3.75

H/12 -8.35

7H/12 -18.75

H/12 89.15

H/12 89.15

[( + 30),2] ,

Endochronic
Theory

Z

-2.5 7H/12

-3.75 7H/12

0.85 5H/12

0.85 5H/12

0.85 5H/12

0.85 5H/12

3.75 11H/12

[(± 45),2] ,

-2.5

-3.75

0.85

0.85

0.85

0.85

3.75

Z

7H/12

7H/12

5H/12

5H/12

Linear

Theory

0

-5.0

-3.75

3.75

0.85

Z

Endochronic

Theory

5H/12

5H/12

5H/12

5H/12

Linear

Theory

17.5

15.85

14.15

Endochronic

Theory

Z

5H/12

5H/12

5H/12

8.35

Z 0

7H/12 -5.0

7H/12 -3.75

5H/12 3.75

5H/12 0.85

5H/12 0.85

5H/12 3.75

11H/12 -0.85

5H/12

17.5

15.85

8.35

3.75

5H/12 0.85 5H/12 3.75 5H/12 3.75

0.08000 5H/12 3.75 5H/12 3.75 5H/12 3.75

0.11100 11H/12 -0.85 11H/12 -3.75 11H/12 -3.75
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5.4.4 The Effect Of WID On Failure

Thus far, this chapter has only examined failure in those laminates with w/d ratios of 10.

However, r( =1=10)12], and [( -4- 20)12], laminates with 1/2" holes and w/d ratios of 5 were also

tested I. This section examines the effect this reduction in w/d has on both the experimental

and predicted fracture stress, _t, and strain, E_'t.

If a hole in a plate caused no stress concentration, the reduction in strength due to a decrease

in the ratio w/d would simply be equal to the reduction in cross-sectional area. However, in

this study, the angle-ply laminates have in-plane and out-of-plane stress concentrations at

both the hole edge and at the edge of the laminate. For the anisotropic plates of this study,

the stress concentrations at the hole edge are dependent on the hole size as well. With this

in mind, it is not surprising that the reduction in strength does not follow the reduction in

cross-sectional area. Comparing the laminates with w/d ratios of 10 to those with w/d ratios

of 5, there is only a 11.1% reduction in cross-sectional area. However, as Table 15 shows,

experiments reveal a reduction in strength of approximately 18.5% and a reduction in ultimate

failure strain of approximately 20% for both laminates. The finite element analyses do not

predict the same strength reduction as experiment. Both linear theory and endochronic the-

ory analysis predict approximately an 11% reduction in strength and ultimate failure strain for

the [( ± 10)1t"], laminates. For the [( ± 20)1=-], laminates, linear elastic analysis predicts ap-

proximately a 9% reduction in strength and ultimate failure strain while the endochronic the-

ory predicts approximately a 10% reduction. Therefore, the finite element results tend to

follow the reduction in cross-sectional area of approximately 11%. Because the finite element

results are extremely conservative in predicting the fracture load, it may not be realistic to

expect them to agree with the experimental strength reduction.
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Table15. TheEffectofwldonNotchedLaminateFailure

[( 4- 10)Iz],

Experiment
(Average)

Linear
Elastic

Endochronic

Theory

w/d = 10

w/d = 5

Experiment
(Average)

Linear
Elastic

Endochronic

Theory

w/d = 10

w/d= 5

w/d = 10

w/d = 5

[( 4- 20),2] '

w/d = 10

w/d = 5

w/d = 10

w/d = 5

w/d = 10

w/d = 5

o_'t(ksi)

-76.255

-62.020

-10.640

-9.441

o'_,'t (ksi)

-45.010

-36.675

E_',(%)

-0.44485

-0.35170

-0.05960

-0.05320

-0.05920

-0.05240

_;"(%)

-0.35495

-0.28365

-0.06050

-0.05490

-0.06060

-0.05460

x

7H/12

7H/12

7H/12

7H/12

Z

7H/12

7H/12

7H/12

7H/12

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-2.5

-2.5
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5.5 Summary

Failure predictions for the unnotched angle-ply laminates were very good whereas failure

predictions for the notched laminates were very conservative. The predicted failure response

of unnotched laminates correlated quite well with experiment using a shear strength of 9.4 ksi.

However, a shear strength of 14 ksi yielded even better correlation for all laminates except the

[( ± 20)1=]. I_minate whose failure prediction was non-conservative with the shear strength

of 9.4 ksi. The endochronic theory predicted c_ _t stresses almost identical to those of linear

analysis. However, the endochronic theory predicted _t strains more accurately than linear

analysis, especially for the [( • 45)42], laminate which exhibits the most ductility.

Using the tensor polynomial at the hole edge to predict the fracture load of notched laminates

gave extremely conservative results. One reason for this is likely due to local failure in the

region around the hole before ultimate failure occurs. Another is that the predicted stresses

around the hole are too high due to the finite element model idealization of discrete ply

interfaces.

The tensor polynomial predicted the correct location and mode of failure initiation for the

notched laminates. However, changing the shear strength from 9.4 ksi to 14 ksi showed a

difference in the predicted location of failure for some of the laminates. Almost all failures

were predicted to be caused by _ls or _lz shear stresses or both of them combined. A shear

failure mode agrees well with the observed failure mode of the test specimens.

Endochronic theory analysis gives a stress state nearly identical to that of linear analysis, for

a given loading, in both the unnotched and notched laminates. Therefore, both analyses

predicted _,t stresses to be nearly the same for all notched laminates. Unlike the unnotched

laminates, the linear theory and endochronic theory analyses predicted nearly identical E_"
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valuesas well, the reason being that none of the laminates were deformed significantly into

their softening regions before failure was predicted.

In conclusion, the endochronic theory failure analysis of notched laminates correlated with

experiment only slightly better than the linear analysis due to the limits of the point-wise fail-

ure criterion and the finite element model that were used. Chapter 4 showed nonlinear ma-

terial behavior to be an important factor in analyzing notched angle-ply laminates. Therefore,

without the limitations imposed by the point-wise failure criterion and the discrete ply interface

finite element model, the endochronic theory would likely predict significantly more accurate

failure stresses, (_", and failure strains, E_ft.
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6.0 Conclusions

This study has analyzed the loading response and failure of unnotched and notched angle-ply

laminates subjected to uniaxial compression. The analysis was performed using the three-

dimensional material nonlinear finite element program AMNISAP, which utilizes the

endochronic theory as a constitutive relationship. Analytical results were compared to ex-

periment and, where appropriate, results from the endochronic theory were compared to re-

sults from linear theory. The conclusions of this study from the previous chapters are

presented below.

6.1 The Endochronic Theory

@

@

The endochronic theory is a macroscopic constitutive theory that was used in this study to

model AS4/3502 graphite-epoxy. The theory, originally developed by Valanis 111=and modified

to model transversly isotropic materials by Pindera and Herakovich 4, z0, is based on irre-

versible thermodynamics and uses the concept of internal variables. The transversely
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isotropic theory was extended to three-dimensions in this study to facilitate the analysis of

laminates with cutouts.

Like the 2-D equations, the 3-D endochronic equations are based on two fundamental laws of

thermodynamics: 1) Conservation of Energy, and 2) The Dissipation (Clausius-Duhem) Ine-

quality. The 3-D equations contain 18 constants (15 independent) which are unique to

AS4/3502 graphite-epoxy. These constants can be separated into reversible constants and

irreversible constants. The determination of the constants is described as follows:

.

.

The six reversible constants (five independent) were used in the expression for reversible

strain and consist of the compliance matrix Aij. Because the compliance matrix models

the linear response of the material, it was determined from the initial response of various

unidirectional lamina tests. Straight lines were least squares fit through the initial data

of the lamina tests and the slopes of these lines were used to determine the Aij

Twelve irreversible constants (10 independent) were used in the expression for irrevers-

ible strain; they are the S_j matrix and the nl, Bll, n2, B_2, n6, and Bg6 parameters. These

constants, which model the nonlinear response of the material, were also determined

from various unidirectional lamina tests. The logarithm of a strain component was plotted

against the logarithm of its corresponding stress component and a straight line was least

squares fit through this data. The slope and strain axis intercept of these lines were used

to determine the constants. Sixteen sets of the irreversible constants were determined;

however, only five sets were considered in the analysis -- those whose S_j matrix was

positive-definite. These five sets were used to model off-axis lamina response and

unnotched angle-ply laminate response. The parameter set which best represented the

experimental lamina and laminate tests was chosen for use in this study.
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6.2 The Finite Element Program AMNISAP

The three-dimensional material nonlinear finite element program AMNISAP utilizes the

endochronic constitutive theory and constant stress and constant strain solution algorithms

to solve the nonlinear system of equations. It also utilizes a symmetry relationship called in-

v_r_inn _vmm==fl_/ In fhi¢= ctelrltt fhc= ,,=,., t_,.-,4._..-t-._i ÷.-,........ -, ......... , ............. ,, .... program ,,,o_ .,...,..,,,,_,.,, ,v ,......u,, v,, ,,,-,,_,_1^0^'-o,--.._.^.,..Tu_,,_u,,'_n:

super computer. The important features of AMNISAP are outlined below.

. The inversion symmetry utilized in AMNISAP consists of rotating a plate through 180 °

about the axis of symmetry. Defining an x= coordinate system (i = 1,2,3), with the x3 coor-

dinate the axis of symmetry, a symmetry transformation changes the coordinates

xa (a -- 1,2) of each material point of the plate into -xa. The inversion symmetry analysis

in this study resulted in considerable storage and run time savings over conventional half

plate analysis.

. The vectorizing utility VAST was used to vectorize the three subroutines COLSOL, ELKAY,

and STRESS in AMNISAP because they were found to use the majority of CPU time.

Based on a 20 element mesh, a total speed factor of 12 was realized by using vectorized

inversion symmetry analysis over non-vectorized half plate analysis. Considerably higher

speed factors were likely realized for the analysis of notched angle-ply laminates in this

study.

. The constant stress and constant strain solution algorithms used in AMNISAP are based

on the concept of initial strain and are classified as step-iterative methods. They each

utilize a psuedo load vector which contains all the nonlinear terms of the equations.

Therefore, the global stiffness matrix is formed only once and remains constant through-

out the analysis. Both algorithms were included in AMNISAP because one of them might
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be better suited for a given problem.

the problem at hand.

The user can choose the algorithm which best fits

6.3 Laminate Response

The response of unnotched and notched angle-ply laminates subjected to uniaxial

compressive loading was analyzed and compared to experiment. All theoretical results were

obtained using AMNISAP. The highlights of this analysis are outlined below.

6.3.1 Unnotched Laminates

. The unnotched angle-ply laminates' axial and transverse response agreed very well with

experiment. The agreement of theory and experiment for the r 4- 45], laminate was es-

pecially good, considering this laminate's substantial softening response. Although the

theoretical/experimental correlation for transverse response was good, it was not quite

as good as that for axial response in the [ 4- 10],, [ 4- 20],, and [" 4- 301, laminates. A

possible cause for the less accurate transverse response is that the endochronic

equations used cannot accurately model mixed stress states (_1 and (_2 are of opposite

sign in the I" + 10],, [ + 20],, and r 4- 30], laminates).
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6.3,2 Notched Laminates

, The endochronic equations were found to predict unloading of various stress components

in the analysis of the notched laminates. At a critical load level, this unloading phenom-

enon prevented higher loading by causing the solution to diverge. A condition referred

to in this study as the zero-slope condition was implemented in AMNISAP to allow loading

past the critical load level. The zero-slope condition forces an unloading stress compo-

nent's stress-strain modulus to zero for the remainder of the loading history.

. Theoretical/experimental correlation of the notched angle-ply laminates' far field axial

response was excellent. Due to the unloading phenomenon mentioned above, the

r( -F 10)1=1, and r( -F 20)1z-l, laminates did not reach the experimentally observed failure

load.

. The theoretically predicted axial strain response near the hole agreed well with exper-

iment. However, the predicted response was dependent on the distance from the hole,

especially in the I"( -4- 10)12-], and l( ± 20)1t_], laminates. The D/A value (nondimensional

distance from the hole) at which the E( =1:10)121, and [( ± 20)1z-I, laminates best agreed

with experiment was different from the D/A value for the r( + 30)1z-I, and 1-( -4- 45)1z-I,

laminates. However, the C( J'- 10)1z]= and I-( :1: 20)1=1, laminates had 1/4" holes whereas

the [( -F 30)12_], and [( + 45)12J, laminates had 1/2" holes, which may have influenced the

placement of the strain gage on the test specimens.

. The predicted (_0, %=, and (_= stress concentration profiles were examined along 0 = 0°

from the hole edge to a distance D/A=0.6. The endochronic theory profiles differed sig-

nificantly from the linear theory profiles, especially for the out-of-plane shear stress z0= •

The important features of the stress concentration profiles are given below:
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The[( ± 10)1z], laminate exhibited the highest _e stress concentration value and the

[( ± 45)1z] ' laminate the lowest value. At gauss planes near an interface (Z=H/12

and Z=SH/12), the endochronic theory predicted a lower peak _e stress concen-

tration in the [( ± 10)1=], and [( ± 45)1=], laminates and a higher peak _9 stress

concentration in the [( ± 20)1z]. and [( ± 30)12], laminates. Both analyses predicted

the peak (Y0stress concentration to occur at the hole edge for the [( ± 10)1z], lami-

nate and at points a small distance away from the hole edge for the other laminates.

The r( ± 30)12], laminate exhibited the highest %= stress concentration and the

E( ± 10)1z], laminate the lowest. In all laminates, linear theory predicted significantly

higher peak %z stress concentrations than the endochronic theory. The peak %z

stress concentration occured at the hole edge.

The _z concentration profiles oscillate between positive and negative values, al-

though the magnitudes are very small. The endochronic theory profiles are very

similar to the linear theory profiles except near the hole edge where the endochronic

theory predicts much larger (_= stress concentrations than linear theory.

5. The predicted stress profiles in material principle coordinates were examined at the hole

edge, for -90 ° < 0 < 90 °. The highlights of these profiles are listed below:

The linear theory and endochronic theory _1 stress profiles are very similar for all

laminates except the r( ± 45)1z], laminate where the endochronic theory predicts a

40% higher peak (_1 stress concentration.

peak ol stress concentrations than the

[( + 45)12], laminates and lower than

[( =t: 20)1z], and [( + 30)12], laminates.

The endochronic theory predicts higher

linear theory for the r( ± 10)12],, and

linear theory concentrations for the
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The linear theory and endochronic theory o"z stress profiles are similar in the

[( + lO),z], and [( + 20)1z_], laminates and relatively dissimilar in the [( ± 30)1z] = and

[( ± 45)1z], laminates. The endochronic theory (_z stress profiles are much more

jagged than the linear theory profiles.

The linear theory and endochronic theory a_ (_,) stress profiles differ significantly for

all the laminates except the [( ± 10)_21= laminate. The endochronic theory c3 stress

profiles exhibit radical jumps and show stress magnitudes much higher than the lin-

ear theory profiles.

The linear theory and endochronic theory interlaminar shear stress _, (_23) profiles

are similar for all the laminates except the r( ± 20)12_], laminate where the profiles

show a significant difference in magnitude.

The linear theory and endochronic theory interlaminar shear stress _5 (%3) profiles

agree reasonably well for all laminates except the E( ± 20)_2_]= laminate. The

endochronic theory peak _5 stress concentrations are significantly lower than the

linear theory concentrations in all laminates except the r( ± 20)_z_], laminate.

The linear theory and endochronic theory shear stress cre (_,12)profiles are similar for

all the laminates. The endochronic theory c e stress profiles are much more jagged

than the smooth linear theory profiles. In all of the laminates, the peak os stress

concentration is.lowest for endochronic theory analysis.

6. Cylindrical coordinate _e and %z stress profiles were examined at the hole edge for

-90 ° < 0 < 90 ° . The highlights of the G0 and zez stress profiles are listed below.

• The _0 stress profiles are very similar to the _1 stress profiles and show the same

trends.
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The%,stressprofiles show the maximum %, stress to occur at 0_0 ° for all laminates.

The linear theory and endochronic theory %= stress profiles are similar in shape, but

differ in peak magnitude. In all laminates, the endochronic theory predicted lower

peak %= stress concentrations than the linear theory.

6.4 Failure

A failure analysis of the unnotched and notched angle-ply laminates was performed using the

tensor polynomial failure criterion. The tensor polynomial was used to predict the fracture

load and, for the notched laminates, the location and mode of failure. Failure away from the

hole edge was examined by applying the tensor polynomial at radii greater than the hole ra-

dius for -90 ° < 0 < 90 °. Finally, the effect of the ratio w/d on failure was investigated for the

[( ± 10)12], and [( + 20)1z]= laminates. The important feature of the failure analysis are out-

lined below.

. Theoretical fracture load predictions agreed very well with experiment for all of the

unnotched laminates except the [ ± 20], laminate. For the [ ± 20], laminate, theory

gave non-conservative failure predictions. An in-plane shear strength value of 14 ksi gave

better fracture load predictions than a shear strength value of 9.4 ksi. The endochronic

theory predicted (_;ft stresses nearly the same as linear theory, but predicted E_,_tstrains

more accurately than linear theory.

. Fracture load predictions for the notched laminates were very conservative. A shear

strength value of 14 ksi gave better fracture load predictions than a shear strength value

of 9.4 ksi; however, the fracture load predictions were still very conservative. The

endochronic theory and linear theory c_" stresses were very similar. However, the
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endochronic theory E__t strains did not correlate with experiment significantly better than

the linear theory _t strains because the conservative fracture loads did not allow the

laminates to be deformed significantly into their softening regions.

The material nonlinear endochronic theory fracture predictions for the notched laminates

did not correlate with experiment significantly better than the linear theory predictions.

Therefore, the cause of the conservative fracture loads is likely due to finite element

stresses near the hole edge that are too high and the application of the tensor polynomial

at the hole edge. Laminates often exhibit local failure (micro-cracking) near notches be-

fore fracture; therefore, the tensor polynomial may actually be predicting local failure and

not fracture.

Application of the tensor polynomial at the hole edge gave very accurate predictions of

the locations and modes of failure. When a shear strength of 9.4 ksi was used, the

endochronic theory gave failure modes and locations identical to those of the linear the-

ory for all laminates. However, when a shear strength of 14 ksi was used, the

endochronic theory and linear theory predicted different failure locations and different

tensor polynomial terms for the [( 4-30)1=] ' and [(-F 45)1z], laminates. In the

[( -F 30)1=], laminate, the endochronic theory predicted a different failure mode than the

linear theory using a shear strength of 14 ksi.

° Application of the tensor polynomial at various radii (or distances from the hole edge) for

- 90 ° < 0 < 90° shows the lowest fracture loads to occur at the hole edge. The profiles

of far field (_It stress versus the distance D/A do not converge at any D/A value; therefore,

a characteristic distance does not seem to exist. As D/A increases, the predicted failure

locations change in both 0 and Z dimensions. The endochronic theory and linear theory

predict identical failure locations as a function of D/A for all laminates except the

[( 4- 45)_=], laminate.

Conclusions 195



. [( ± 10)1z], and [( ± 20)12], laminates with w/d ratios of 10 and 5 were tested I and ana-

lyzed. For a decrease in w/d from 10 to 5, experiments revealed a reduction in strength

of approximately 18.5% and a reduction in ultimate failure strain of approximately 20%

for both laminates. Both linear theory and endochronic theory gave reductions in strength

and ultimate failure strain approximately equal to the 11.1% reduction in cross-sectional

area.
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For a given test, a straight line representing a "best fit" through the data is required. The data

reduction in Chapter 2 uses a least squares fit to best approximate this straight line. A

straight line is represented by the equation y -- mx + b where m is the slope and b is the

y-intercept on a cartesian coordinate system. If x is designated to be the independent vari-

able, then for a given x data point, there exists both a y data point (called y-observed or Yob,)

and a y value corresponding to the equation y = mx + b The difference between these values

is represented by the equation d = yo_, - mx + b.

It is desired to minimize this difference over the entire range of data points, but since d may

be a positive or negative quantity, the difference d cannot simply be summed over each point.

The least squares method sums the square of the difference (function f below) over each point.

This may be represented in functional form as

f(m,b) = _ d2 (A.1)
i=1

where

di = Yi - taxi - b

In order to minimize this function of the two variables m and b, the derivative of the function

with respect to each variable is set equal to zero and the resulting two equations are solved

simultaneously.

af _ af _ 0 (A.2)
_m ab

n

_f - _ 2(y i- mx i- b)x I = 0
_m i=1

n

_f - _ -2(y I- mx i- b) =0
ab i=1
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Equations (A.2) may be expanded to yield:

13 n

m,T..,xI + bn = _Yi
i=1 I=1

(A.3)

13

i=1 i=1 i=1

In matrix form, equations (A.3) exhibit the form:

I I'1i _1 xi nn]l I={':' }
,=_x, (,_x,_,)

Equations (A.4) yield a "best fit" value for the slope m and the y-intercept b.

(A.4)
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The following Tables are referenced in Chapter 2 for determining the endochronic constants.

They contain slopes and y-axis intercepts from various lamina tests.

Table B.1. Tables for Determining At,, v12,A_,2! and A44

(a) A,, Determined from 0° Unlaxlal Compression Tests

Test # Slope m (psi) Y-intercept (psi) A.

1 19,509,667.9 13.17 5.12566E-08

2 19,500,513.2 -48.80 5.12807E-08

Average 19,505,090.5 -17.82 5.12687E-08

(b) v,= Determined from 0° Uniaxial Compression Tests

Test # Slope m(psi)

1 -0.3500225

2 -0.3159658

Average -0.3329942

Y-intercept(psi)

-6.81225E-06

-1.69590E-05

-1.18856E-05

V12

0.3500225

0.3159658

0.3329942

(c) A=2 Determined from 900 Uniaxial Tests

Test # Slope m(psi)

1 1,525,254.8

2 1,527,561.5

I Average 1,526,408.2

Y-intercept (psi)

150.04

-55.12

A22

6.55628E-07

6.54638E-07

47.46 6.55133E-07

(d) A44 Determined from 2-3 Plane Iosipescu Tests

Test #

1

2

Slope m (psi)

472,208.9

Y-intercept(psi) A44

-31.94 2.11771E-06

445,017.1 51.94 2.24710E-06

Average 458,613.0 10.0 2.18049E-06
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TableB.2.Tablesfor DeterminingA6e,B_, m,n=,andB°==

(a) A66Determinedfrom1-2PlaneIosipescuTestsandOff-AxisTests

IosipescuTests Slopem (psi)

1 812,268.9

2 903,552.3

Off,Axis Slope m (psi)

10

Y.intercept (psi)

1.46

A66

1.23112E-06

0.04 1.10674E-06

Y.intercept(psi) A66

0.00 1.19095E-06839,663.2

15 887,303.5 0.00 1.12701E-06

30 789,924.2 0.00 1.26594E-06

-0.05 1.19615E-06

0.48 1.18373E-06

45 836,014.9

Average 844,787.2

(b) B1, and n_ Determined from 0° Uniaxial Compression Tests

Test# Slope m(psi) Y.intercept(psi) n, B_,

1 2.403743 -35.79 2.403743 2.85762E-16

2 2.492074 -36.89 2.492074 9.55283E-17

Average 2.447909 -36.34 2.447909 1.90645E-16

(c) n_ Determined from 90° Unlaxial Compression Tests

Test # Slope m(psi) Y-intercept(psi) n=

1 2.84790 -35.62 1.8479

2 4.07145 -48.00 3.0714

Average 3.459675 -41.81 2.4597

(d) B°2= Calculated Using n2 from 90° Uniaxial Tests

Test # Y.intercept BI2 x Sl_Zs_

1 -41.9532 2.08449E-18

2 -41.7110 2.65574E-18

Average -41.8321 2.37010E-18
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TableB.3. Tablesfor Determining n6 and S66

(a) neA Determined from 1-2 Plane Iosipescu Tests and Off-Axis Tests Using the Average
Value of A_

IosipescuTests Slope 1(6 In C6 neA = ks-1

1 3.84135 -41.29 2.84135

2 4.04939 -43.18 3.04939

Off-Axis Tests Slopeks In C6 neA = ks- 1

10 2.99530 -33.08 1.99530

15 2.96310 -32.33 1.96310

30 3.73866 -39.83

45 3.68246 -38.59

Average 3.54504

2.73866

2.68246

-31.62 2.54504

(b) nee Determined from 1-2 Plane Iosipescu Tests and Off-Axis Tests Using Individual
Values of A66

Iosipescu Tests Slope ks In C6 nse = ks - 1

1 3.84140 -41.14 2.84140

2 4.18540 -44.69 3.18540

Off-Axis Tests Slope ks In C6 n6. = ks - 1

10 2.99770 -33.08 1.99770

15 _ nTAnn _ [o 1 n_Ann.ol_ou

30 3.61290 -38.47 2.61290

45 3.58900 -37,77 2.58g00

Average 3.53355 -37.96 2.53355

(c) S66 Calculated Using neA for 1-2 Plane Iosipescu Tests

Test # Y-intercept S66

1 -38.60 1.81042E-13

2 -38.40 2.12236E-13

Average -38.50 1.96639E-13
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Consider the following Sij matrix:

$11 S12 $12 0 0 0

S12 S22 $23 0 0 0

S12 $23 $22 0 0 0

0 0 0 $44 0 0

0 0 0 0 Sss 0

0 0 0 0 0 Soo
w j

To be positive definite, the above matrix must meet the following criteria:

$11 :> 0

I Sll $12 > 0
S12 S22

$11 $12 $12

$12 S22 $23

$12 S23 $22

> 0

Expanding equations (B.2) through (B.4) gives the following conditions:

1. Sll > O

2. S.S=2 - S_z > 0

3. $11(Sz22- S=z3)+ 2S_2(Sz3 - S_2) > 0

(B.1)

(B.2)

(B.3)

(B.4)
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A finite element model is a set of N equations with N unknowns. The inversion symmetry

conditions introduce M new equations, reducing the number of equations and unknowns to N

- M. Applying the inversion symmetry condition to an anisotropic plate in the modeling stage

reduces the geometry of the model from full to half. Any line passing through the center of

symmetry which splits the plate into two half sections may be used. The symmetry line cho-

sen for modeling the plate with a central hole of this study is the y-axis (Figure D.1).

A simple example is used here to show how a fuii finite element model is reduced to a half

model. Consider an anisotropic plate under compression. A simple four element grid with 4

node elements represents the finite element model as shown in Figure D.1. For the sake of

simplicity, assume that each node has only one degree of freedom, that in the y-direction.

The global set of equations is written

Kll K12 0 K14

K12 K22 K23 K24

0 K23 K33 0

K14 K24 0 K44

K15 K25 K35 K45

0 K26 K36 0

0 0 0 K47

0 0 0 K48

0 0 0 0

K15 0 0 0 0 _ V 1_ F1

/

K2s K26 0 0 0 V2 [ F2

K35 K3s 0 0 0 V 3 F 3

0
K45 0 K47 K48 0 V4 t

K55 Ks_ K57 K58 K59 < V5 > = < 0 ,_

K57 0 K77 K78 0 V 7 -F 3

K58 K68 K78 K88 K89 V8 -F 2

K59 Ks9 0 K89 K99 V9 -F 1

(D.1)

where V_ represent the unknown nodal displacements.

Applying the inversion symmetry relationship to the displacements, using the Y-axis as the

line of symmetry,
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Figure D.1. Four Element Finite Element Grid with 4 Node Elements for Anisotropic Plate Under
Compression Loading
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V7 = - V3

V4 = - V6 (D.2)

V 1 = - V9

V8 = - V2

Substituting equations (D.2) into (D.1) gives the following set of equations.

Kll K12 0 K14 K15 0 0 0 0

K12 K22 K23 K24 K25 K26 0 0 0

0 K23 K33 0 K35 K36 0 0 0

K14 K24 0 K44 K_ 0 K47 K48 0

K15 K25 K35 K45 K55 K56 Ks7 K58 K59

0 K26 K36 0 K56 K66 0 K68 K69

0 0 0 K47 K57 0 K77 K78 0

0 0 0 K48 K58 K68 K78 K88 K89

0 0 0 0 K59 K69 0 K89 K99

(-V9

lV3

- V6

< V5 () v6

-V3 1
I _ V2

_ V9

I F2
F3

ol
=< 0

ol
- F3

- F2

k-F1)

(D.3)

Equation set (D.3) has only five unknown displacements -- four of the unknown displacements

were eliminated using inversion symmetry. Rearranging equation set (D.3) yields:
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Kll

-K12

0

K14

-- K15

0

0

0

0

(D.4)

-K12 0 K14 -K15 0 0 0 0 'V9' _ -FI' k
I | Iooo

K23 K33 0 K35 K36 0 0 0 V3{ i F013
-K24 0 K44 -K45 0 K47 K48 0 V6

K26 K36 0 K56 K66 0 - K68 K69

0 0 K47 - Ks7 0 K77 K78 0 VI_ F 3

0 0 K48 -K58 -K68 K78 Ks8 -K89 V2/ F 2

0 0 0 K59 K69 0 - K89 K99 \ V 9/ \ - F 1

Reducing equation set (D.4) to the five independent equations and unknowns yields:

(K22 + K88) (K23+ K78) (K2s- KSa) (K_+ K.le )-(K24+ Kea) (--K12+ -K_)" I

(K23 + K78) (K33 + K77) (K3s KsT) (K47 + K_) 0

(K2s + Kss) (K3,5 -- K57) Kss (K56 - K45) (K59 - KlS )

'_48 + K26) - (K24 + K6_) (K47 + K36) (Ks6 - K4s) (K44 + Ke6) (K14 + Kiss)

( -K12 + -KIs 9) 0 (Ks,9 - K15) (K14 + K=) (Kll + K_) /
J

v, 12,,I
V3 '1 2F3 |

V_>= < " HD.5)

Because the stiffness terms are inversion symmetric as well, equation set (D.5) may be sim-

plified even further. Note that

K88 = K22 K78 = K23

K48 = K26 K24 = K68

K12 = K89 K77 = K33
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Ks7 = K35 K47 = K36 (D.6)

Kss = K25 K56 = K45

K_, = K66 Kls = K59

K14 = K69 Kll = K99

Therefore,

2K22 2K23 0 2(K26 - K68) -2K89

2K23 2K33 0 2K36 0

0 0 K55 0 0

2(K2s- K68) 2K36 0 2K66 2K69

- 2K89 0 0 2K69 2K99

V2 ( 2F2_

V5 =

t_°q
V9 2F1_

(D.7)

Equation set (D.7) include stiffness and displacement terms from elements 1 and 2 only. Of

course, a 2 can be factored from equations 1,2,4, and 5 in equation set (D.7).

This simple example shows how a full plate finite element model may be reduced to that of

a half plate model (Figure D.2). In the above example, the line of symmetry, was taken as the

Y-axis. Alternatively, the X-axis, a line through node points 3, 5, and 7, or a line through points

1, 5, and 9 could have been used as the line of symmetry.

Of course, in modeling the full plate with a half plate mesh, the finite element program must

be modified internally and the input data modified appropriately. This is discussed next.
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Figure D.2. Two Element Inversion Symmetry Finite Element Grld with 4 Node Elements for

Anisotropic Plate Under Compression Loading
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D.1 Finite Element Development

Independent and dependent nodes can be defined for the half plate mesh shown in Figure D.2o

Those nodes associated with the independent degrees of freedom are called independent

nodes. All other nodes are dependent nodes. In the plate in Figure D.2, node 8 (or node 2)

is the only dependent node because its displacement is dependent upon the node 2 dis-

placement (or the node 2 displacement is dependent upon the node 8 displacement).

In order to implement the inversion symmetry condition, the finite element program must

know which nodes are independent and which nodes are dependent. This is done in the input

data. Each node is labeled with an integer valued flag variable -- either a O, 1, or -1. The

variable 0 indicates that this node is independent. The variable 1 indicates that the node is

independent, but has a dependent node which corresponds to it. The variable -1 indicates the

node is dependent and corresponds to one of the nodes marked with a 1. The dependent

nodes are matched to their appropriate independent nodes by their global coordinate re-

lationship.

The program assigns each node to a global equation number. Dependent nodes are assigned

to the same global equation number as their corresponding independent nodes. In the as-

sembly procedure, the stiffness terms of the dependent nodes are added to the stiffness terms

of the independent nodes. However, before the assembly of the global stiffness matrix, the

elemental stiffness terms are modified in those elements which contain dependent nodes.

For elements with dependent nodes, the stiffness and load matrices are modified by transf-

ormations of the form
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FK] = [I"]'I'[K][[ "] (D.8)

{P} = [FIT{p}

where [K] and {P} are the element stiffness and load matrices and [r] is the transformation

matrix.

For element 2 in the mesh of Figure D.2, the elemental equations would appear as

K121 K22 K23 K12_

K_2 K222 K_3 K224

K_3 K23 K23 K24

K_4 K24 K234 K24

V5

V6

V8

V9

0

0

(0.9)

or

[K2] {V }

The transformation matrix would look like

=

IF]

I 0 0 0

0 I 0 0

0 0 -I 0

0 0 0 I

(D.IO)

After the transformation, the transformed stiffness and load matrices would look like
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[K]

K121 K122 -K_3 KI2,

K_2 K22-K23 K24

-K123 -K_3 K23 -K_

K124 K24 -K_ K_

(O.ll)

=1FIF2
For element 1, the elemental equations would appear as:

/

!K IK 2K 3K 4!tv2f li21 .KI2 K12 K13 K14 V3 = 3

KI, K_,K;,K_ V_
KI4 K14 K_ K_ V 6 /0/

(D.12)

or

[KI]{v } = {pl}

Assemblying the element stiffness and force matrices to form the global stiffness and force

matrices yields
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(K_+ K_)K_ (K_- K_) (K_,- K_) -K_,
K_, K_ K_, K_, o

-K_ 0 K_4 K_4 K_

V2

V3

Vs

V6

V9

F2

F3

= 0

0

- F1

(D.13)

Transforming the elemental stiffness terms into global stiffness terms yields

K22 K23 0

K23 K33 K35

0 K35 KsS

(K26- K68 ) K36 K56

- K89 0 K59

(K26- K68) -K89

K36 0

K56 K59

K66 K69

K69 K99

V2

V3

Vs

V6

V9

F2

F3

0

0

F1

(D.14)

These global equations are identical to those of equation set (D.7) in the previous section.
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To compare scalar operations to vector operations, consider the following subroutine.

10

SUBROUTINE XT(N)
COMMON A(100),B(IO0),C(IOO),D(100)
COMMON X(100),Y(100)

DO 10 I = 1,2

X(I) = A(I)*B(I) + C(I)*D(I-1)
Y(I) = ABS(X(I))

CONTINUE

RETURN
END

The sequence of scalar operations in this loop are as follows:

D(1)*C(2) ....................... Registerl
A(2)*B(2) ....................... Registerj
Registerj + Registerj .......... Register K
RegisterK .............................. X(2)
ABS(RegisterK) ...................... Y(2)

D(2)*C(3) ....................... Register_
A(3)*B(3) ....................... Registerj
Register_ + Registerj .......... Register K
Register K .............................. X(3)
ABS(RegisterK) ...................... Y(3)

t

D(N-1)*C(N) .................... Register I
A(N)*B(N) ...................... Registerj
Register_ + Registerj .......... Register K
Register K ............................. X(N)
ABS(RegisterK) ..................... Y(N)

The Cyber 205 vector operation sequence is shown below:

D(1)*C(2) .................... TEMP,(1)
D(2)*C(3) .................... TEMPi(2)

t
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D(N-1)*C(N) TEMP,(N-1)

A(2)*B(2) ................ TEMP=(1)
A(3)*B(3) ............... TEMPz(2)

A(N)*B(N) TEMP=(N-1)

TEMPI(l) + TEMP2(1) ...... X(2)
TEMPi(2) + TEMPz(2) ....... X(3)

t

TEMPI(N-I) + TEMP2(N-1) -- X(N)

ABS(X(2)) ........................ Y(2)

ABS(X(3)) ....................... Y(3)

ABS(X(N)) Y(N)

As the example above shows, the vector processor performs its operations on vectors (or

arrays) such as D(N-1)*C(N). It also may perform the above operations at the same time, re-

ferred to as parallel processing. Obviously, this processing is much speedier than the scalar

processing.

However, not all do-loops can be vectorized. An array which is a function of previous values

of itself may not be vectorized, as shown in the example below.

SUBROUTINE XT(N)

COMMON A(100),B(IOO),C(100),D(IO0)

COMMON X(100),Y(IO0)

10

DO 10 1=2,N

X(I) = A(I)*B(I) + C(I)*X(I-1)

Y(I) = ABS(X(I))
CONTINUE

RETURN
END
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Theaboveoperationmayonlybecomputedonestepat a time becausethevalueofX(I)de-

pendsuponX(I-1),Vectorprocessingwouldgiveerroneousresultsin thiscase. Cyber205

vectorprocessingrestrictionsare: (1)Argumentsmustbedeterminablepriortotheoperation,

(2)Operandsmustbe addressableundercertainconventions,and(3)Arrayelementsmust

becontiguous.
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